本发明属于齿轮箱故障检测技术领域,具体涉及一种齿轮箱齿轮剥落故障检测方法。
背景技术:
齿轮箱作为现代机械设备的一个重要组成部分,担负着机器整体的动力传输、功率传递、变速等功能,由于行星齿轮箱和其他齿轮箱相比较具有重量轻、传动比范围大和承载力强等优势,其可用于采矿设备,起重机和升降机等工业领域,同时被广泛应用于风力发电机、火力发电厂、航空航天等高精尖制造工程领域中。
行星轮出现齿面剥落故障时,行星轮时变啮合刚度(tvms)的改变会对行星齿轮箱传动系统动力学振动响应造成一定的影响,所以对刚度计算方法进行研究,可以为后续计算行星轮剥落故障刚度奠定夯实的基础。对于齿轮故障的检测和诊断研究中,剥落故障作为齿轮失效的主要形式,针对齿轮不同程度的剥落故障,需要对剥落故障所激发的独特振动特性有更好的了解,将时变啮合刚度考虑在行星齿轮箱动力学模型中,进行动力学建模、仿真,与所采集的振动信号进行对比分析,最终达到对行星齿轮箱的健康状态监测。
传统的对行星齿轮箱振动信号处理的方法多为小波分析法,经验模态分解(emd)法等。经验模态分解(emd)与小波分析法相比具有一定的自适应性,但是仍存在着模态混叠的问题,集合经验模态分解法(eemd)通过对原信号加入白噪声的方式,对模态混叠有一定的抑制效果。但是由于eemd算法迭代次数较多,增加了计算量,而且如果添加的白噪声不合适还会使得分解得到的分量未必都能满足imf定义,出现较多的无意义的imf分量,不利于后续行星齿轮箱故障的提取。时变滤波经验模态分解(tvf-emd)方法虽然解决了emd所存在的模态混淆和间歇问题,但该方法对带宽阈值ξ和b样条阶次n的选择存在盲目信,而使用tvf-emd方法对不同故障或不同研究对象进行振动信号处理ξ和n的取值对结果影响较大,所以对这两个参数的自助寻优变的极为重要。
技术实现要素:
本发明提供一种齿轮箱齿轮剥落故障检测方法,解决现有检测方法存在的问题。
为了达到上述目的,本发明的技术方案如下:
一种齿轮箱齿轮剥落故障检测方法,该方法包括:首先计算啮合刚度与tvms,建立动力学模型;然后采集齿轮信号,利用gwo-tvf-emd法分析信号;最后离线分解分析信号的强弱程度进而判断剥落故障的强度。
进一步的,所述gwo-tvf-emd法分析信号包括以下步骤:
1)输入振动信号x(t)并设置tvf-emd参数的搜索范围,初始化灰狼数量n和最大迭代次数q的参数。
2)使用tvf-emd方法分解信号,计算所有n的sampen值并保存每次迭代的sampen值;
3)判断是否满足结束条件,即是否l≥q:若是,则迭代终止;反之使l=l 1迭代继续;
4)获得并保存最小sampen值和相应的最佳参数组合;
5)使用具有优化参数的tvf-emd分解x(t),计算所有imf加权指标;
6)最大加权值作为选取最优imf分量的依据。即具有最大加权指标的imf分量被定义为最敏感imf;
7)通过包络谱进一步分析所选的敏感imf,最终正确判断出行星齿轮箱存在的故障特征。
与现有技术相比,本发明的有益效果如下:
本发明建立行星轮系纯扭转动力学模型,求解模型得到系统振动响应特征,提取了正常状态、不同程度剥落故障状态下的系统振动响应特征,可反映出剥落故障程度的改变对系统振动响应的影响,进而评估齿轮剥落故障的演化过程,本发明不仅能够对齿轮的运行状态进行监测,判断齿轮是否发生剥落故障,还能识别齿轮产生剥落故障的轻重程度,同时解决了原有的处理齿轮箱振动信号方法所存在的参数选取问题。
附图说明
图1是齿轮剥落故障监测框架图;
图2是行星轮系的纯扭转振动模型图;
图3是行星齿轮箱状态监测试验台原理图;
图4是行星齿轮箱健康状态监测试验方案图;
图5是改进后的gwo-tvf-emd方法流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
参见图1,本发明所采用的基础方案是:
本发明依据行星齿轮箱的特点,建立了正常齿轮内、外啮合齿轮副及外啮合齿轮副齿面剥落故障的时变啮合刚度计算模型,得到不同程度剥落故障齿轮副的时变啮合刚度变化规律。建立行星轮系纯扭转动力学模型,模型如图2所示,求解模型得到系统振动响应特征,对正常状态、不同程度剥落故障状态下的系统振动响应特征进行了研究,分析了剥落故障程度的改变对系统振动响应的影响。以图3所示原理图建立行星齿轮箱状态监测试验台,然后基于行星齿轮箱试验台,制定了图4所示的行星齿轮箱齿面剥落故障试验方案,对不同程序剥落故障进行模拟加工,完成试验操作并对不同工况试验数据进行了采集,提出了基于灰狼优化算法及时变滤波经验模态分解方法(gwo-tvf-emd),其运算流程如图5所示,对不同程度剥落故障状态下的振动信号进行了分析,在验证含有剥落故障的行星齿轮箱动力学模型理论研究的正确性的同时,证明了本专利所采用的方法的实用性,进而提供了一种行星齿轮箱齿轮剥落故障检测方法。
需要说明的是,本发明实施例提供的齿轮是指在行星齿轮箱传动系统中的运转部件,如太阳系运动状况组成的齿轮,一般由太阳齿轮、行星齿轮、环齿轮、行星齿轮架所构成,在齿轮工作时,会产生齿轮振动信号,本发明实施例通过对轮齿振动信号的信号处理分析,来识别轮齿是否发生了剥落故障。
本发明基于行星齿轮箱试验台对其进行健康状态监测,试验台原理图如图4所示。齿轮剥落故障演化过程是由于裂纹故障的扩展而引起的剥落机制,而剥落现象最早出现的位置是在行星轮上,实验通过加工不同的凹陷矩形坑,模拟齿面剥落故障,剥落区域在齿面啮合点处,剥落区域向齿宽方向的延展,齿面剥落故障程度由剥落面积占渐开线齿轮齿廓面积的比例所决定,以0%、8.5%、17%、100%为正常、轻、中、重度剥落故障的标定,并且在恒速变载荷工况下完成故障试验,与正常齿轮所测得的试验数据进行对比分析,最终将理论与实际的对比分析。构造一种新的信号处理算法—gwo-tvf-emd法,将样本熵作为tvf-emd法的适应度函数,采用灰狼优化算法(gwo)对带宽阈值和b样条阶数这两个参数进行寻优,找到最优组合,能够更清晰的提取到齿轮故障频率的谱峰值,完成齿轮故障诊断。
本方法采用的齿轮纯扭转动力学模型更贴合实际故障类型,能准确反应实际故障,解决了原算法存在的参数选取问题,可选取到最优的齿轮故障信号的特征频率,进而对齿轮剥落故障能有效诊断。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
1.一种齿轮箱齿轮剥落故障检测方法,其特征在于,该方法包括:首先计算啮合刚度与tvms,建立动力学模型;然后采集齿轮信号,利用gwo-tvf-emd法分析信号;最后离线分解分析信号的强弱程度进而判断剥落故障的强度。
2.根据权利要求1所述齿轮箱齿轮剥落故障检测方法,其特征在于,所述gwo-tvf-emd法分析信号包括以下步骤:
1)输入振动信号x(t)并设置tvf-emd参数的搜索范围,初始化灰狼数量n和最大迭代次数q的参数。
2)使用tvf-emd方法分解信号,计算所有n的sampen值并保存每次迭代的sampen值;
3)判断是否满足结束条件,即是否l≥q:若是,则迭代终止;反之使l=l 1迭代继续;
4)获得并保存最小sampen值和相应的最佳参数组合;
5)使用具有优化参数的tvf-emd分解x(t),计算所有imf加权指标;
6)最大加权值作为选取最优imf分量的依据。即具有最大加权指标的imf分量被定义为最敏感imf;
7)通过包络谱进一步分析所选的敏感imf,最终正确判断出行星齿轮箱存在的故障特征。
技术总结