本发明属于室内定位
技术领域:
,具体涉及一种针对摆臂行人的行人航位推算方法。
背景技术:
:目前,基于imu的行人航位推算(pdr)系统将导致定位误差的积累。更重要的是,许多当前基于智能手机的pdr系统要求用户的手机相对于用户是固定的。不仅如此,pdr系统中的一些研究甚至没有分析用户携带手机的方式,这将在pdr系统的步伐检测和航向估计中造成巨大的误差。当行人正常行走时,他们总是向前看,并自然地周期性地来回摆动手臂。在这种情况下,其他pdr系统无法正确确定用户的运动方向,这使得这些系统不适用于带有摆臂的行人。技术实现要素:本发明的目的是为了解决行人航位推算的问题,提出了一种针对摆臂行人的行人航位推算方法。本发明的技术方案是:一种针对摆臂行人的行人航位推算方法包括以下步骤:s1:利用惯性传感器采集行人的俯仰角序列、方位角序列、时间序列、惯性测量单元频率和定位周期,并计算步伐完成俯仰角和步伐完成手机航向;s2:根据步伐完成俯仰角和步伐完成手机航向,计算步伐完成航向;s3:利用惯性传感器采集行人的测量步长、俯仰角幅度和加速度振幅数据,并计算步伐完成步长;s4:利用pdr算法,根据步伐完成航向和步伐完成步长进行航位推算。进一步地,步骤s1包括以下子步骤:s11:利用惯性传感器采集行人的俯仰角序列方位角序列时间序列惯性测量单元频率f1和定位周期t;s12:从俯仰角序列中获取个俯仰角数据,从时间序列中获取个时间数据;s13:设置索引阈值δi、角度阈值δθ和时间差δt,并进行初始化;s14:在俯仰角序列和方位角序列中,标记θi取俯仰角序列中最大值或最小值时的索引,并存入第一索引序列中,标记ψi取方位角序列中最大值或最小值时的索引,并存入第二索引序列中,其中,θi表示俯仰角序列中第i个俯仰角数据,ψi表示方位角序列中第i个方位角数据;s15:根据第一索引序列和第二索引序列分别在俯仰角序列和时间序列中确定步伐完成俯仰角与俯仰角和方位角取得最值的时间并去除步伐完成俯仰角中最大俯仰角和最小俯仰角之差不超过初始化后俯仰角阈值δθ的俯仰角数据,去除俯仰角和方位角取得最值的时间中步距时间间隔不超过初始化后时间差δt的时间数据;s16:选择第二索引序列中满足i-δi<j<i δi的索引,并存入第三索引序列中,若第i个俯仰角数据θi是最大值,则标记第三索引序列中第n个方位角数据ψn处于最大值的索引,否则,标记第三索引序列中第n个方位角数据ψn处于最小值的索引;s15得到的步伐完成俯仰角序列中,这里面除了最大值就是最小值。s17:基于步骤s16中标记的索引,根据方位角序列和第三索引序列确定步伐完成手机航向进一步地,步骤s2包括以下子步骤:s21:根据步伐完成俯仰角计算第一偏移量δψ1和第二偏移量δψ2,并初始化第一偏移量δψ1和第二偏移量δψ2;s22:根据初始化后的第一偏移量δψ1和第二偏移量δψ2,计算步伐完成时人的航向γi;s23:将步伐完成时人的航向γi保存在步伐完成航向中。进一步地,步骤s21中,当步伐完成俯仰角为完成步行时最大俯仰角时,计算第一偏移量δψ1,其计算公式为:δψ1=ψ1-ψd其中,ψ1表示第一次达到最大俯仰角时的手机航向,ψd表示初始行进方向的手机航向;假设用户右手握住手机并斜着走,则挥舞手臂的过程可以直接简化为周期性地改变俯仰角。当用户将手向前挥动到最高位置时,他的左脚完成步行步骤,并且俯仰角达到最小;当用户将手向后挥动到最高位置时,他的右脚完成步行步骤,并且俯仰角达到最大。当步伐完成俯仰角中为完成步行时最小俯仰角时,计算第二偏移量δψ2,其计算公式为:δψ2=ψ2-ψd其中,ψ2表示第一次达到最小俯仰角时的手机航向。进一步地,步骤s22中,若俯仰角序列中第i个俯仰角数据θi是俯仰角序列中的最小值,则步伐完成时人的航向γi的计算公式为:γi=ψi-δψ1其中,ψi表示方位角序列中第i个方位角数据,δψ1表示第一偏移量;否则,步伐完成时人的航向γi的计算公式为:γi=ψi-δψ2其中,δψ2表示第二偏移量。进一步地,步骤s3包括以下子步骤:s31:利用惯性传感器采集行人的测量步长、俯仰角幅度ampθ和加速度振幅ampa,并进行步长拟合;s32:对步长拟合的结果进行加权处理,得到步长的初步目标函数;s33:根据步长的初步目标函数,构建最优目标函数;s34:根据最优目标函数,构建步长目标函数,并根据步长目标函数计算步伐完成步长。进一步地,步骤s31中,进行步长拟合的计算公式为:其中,sl1表示通过俯仰角振幅拟合得到的步长函数,sl2表示通过加速度振幅拟合得到的步长函数,n表示拟合阶数,k表示泰勒公式正常表达值,ampθ表示俯仰角振幅,ampa表示加速度振幅,ak表示拟合得到的第一系数,bk表示拟合得到的第二系数。进一步地,步骤s32中,步长的初步目标函数sl的表达式为:sl=a·sl1 b·sl2其中,sl满足e(sl)=a·e(sl1) b·e(sl2)=(a b)·l=l,a表示第一参数,b表示第二参数,l表示真实步长,e(sl)表示步长的初步目标函数sl的平均值,e(sl1)表示通过俯仰角振幅拟合得到的步长函数sl1的平均值,e(sl2)表示通过加速度振幅拟合得到的步长函数sl2的平均值;步骤s33中,最优目标函数mind(sl)的表达式为:其中,表示第一方差,表示第二方差;步骤s34中,步长目标函数sl′的计算公式为:本发明的有益效果是:本发明通过分析摆臂行走的姿势,改进了传统的pdr系统,提升了行人摆臂行走时步伐检测以及航向估计的准确性。当行人在使用手机定位同时摆臂行走时,本发明将具有比传统pdr系统更高的精确度。附图说明图1为行人航位推算方法的流程图;图2为本发明实施例中直行时步伐检测结果图;图3为本发明实施例中路径1航向估计结果图;图4为本发明实施例中路径2航向估计结果图。具体实施方式下面结合附图对本发明的实施例作进一步的说明。如图1所示,本发明提供了一种针对摆臂行人的行人航位推算方法,包括以下步骤:s1:利用惯性传感器采集行人的俯仰角序列、方位角序列、时间序列、惯性测量单元频率和定位周期,并计算步伐完成俯仰角和步伐完成手机航向;s2:根据步伐完成俯仰角和步伐完成手机航向,计算步伐完成航向;s3:利用惯性传感器采集行人的测量步长、俯仰角幅度和加速度振幅数据,并计算步伐完成步长;s4:利用pdr算法,根据步伐完成航向和步伐完成步长进行航位推算。在本发明实施例中,首先考虑行人使用摆臂走路的情况,并使pdr也适用于摆臂行人的场景。在这种情况下,手臂摆动的幅度与用户的身高、性别、体重和其他因素有关。受路况的影响,即使是同一用户,不同的步幅也会有不同的幅度。这种不确定性事件将严重影响航向,步长和步伐检测的准确性。本发明基于手机欧拉角,提出新的步伐检测以及航向估计算法,改善步长估计方案,使改进pdr算法在行人摆臂行走时具有更高的准确度。在本发明实施例中,步骤s1包括以下子步骤:s11:利用惯性传感器采集行人的俯仰角序列方位角序列时间序列惯性测量单元频率f1和定位周期t;s12:从俯仰角序列中获取个俯仰角数据,从时间序列中获取个时间数据;s13:设置索引阈值δi、角度阈值δθ和时间差δt,并进行初始化;s14:在俯仰角序列和方位角序列中,标记θi取俯仰角序列中最大值或最小值时的索引,并存入第一索引序列中,标记ψi取方位角序列中最大值或最小值时的索引,并存入第二索引序列中,其中,θi表示俯仰角序列中第i个俯仰角数据,ψi表示方位角序列中第i个方位角数据;s15:根据第一索引序列和第二索引序列分别在俯仰角序列和时间序列中确定步伐完成俯仰角与俯仰角和方位角取得最值的时间并去除步伐完成俯仰角中最大俯仰角和最小俯仰角之差不超过初始化后俯仰角阈值δθ的俯仰角数据,去除俯仰角和方位角取得最值的时间中步距时间间隔不超过初始化后时间差δt的时间数据;s16:选择第二索引序列中满足i-δi<j<i δi的索引,并存入第三索引序列中,若第i个俯仰角数据θi是最大值,则标记第三索引序列中第n个方位角数据ψn处于最大值的索引,否则,标记第三索引序列中第n个方位角数据ψn处于最小值的索引;s15得到的步伐完成俯仰角序列中,这里面除了最大值就是最小值。s17:基于步骤s16中标记的索引,根据方位角序列和第三索引序列确定步伐完成手机航向在本发明实施例中,行人通常在走路时会挥动手臂,根据摆臂的特性,可以使用俯仰角θ来检测步行步态。与基于加速度的步态检测方法相比,该方法最不可或缺的优势在于,它可以准确地确定用户何时完成了脚步,甚至可以确定该步态完成后手臂的摆动方向。这里描述的摆动方向是指手臂是向前还是向后摆动。该时间信息可以用作随后的航向估计算法和位置确定算法的同步信号。假设用户右手握住手机并斜着走,则挥舞手臂的过程可以直接简化为周期性地改变俯仰角。当用户将手向前挥动到最高位置时,他的左脚完成步行步骤,并且俯仰角达到最小;当用户将手向后挥动到最高位置时,他的右脚完成步行步骤,并且俯仰角达到最大。在正常的步行过程中,正常人的步行过程中俯仰角的最大和最小变化将超过阈值δθ,并且步距之间的时间间隔也将超过阈值δt。经过上述处理,可以确定步伐完成时间和步伐完成俯仰角由于行走时腕关节、肩关节和肘关节的运动不完全同步,仅用同步信号无法得到手机的准确航向。所以,使用时间附近方位角的绝对最大值(max)或最小值(min)来识别手机航向。使用最大值或最小值取决于前后摆动的方位关系。如果向前摆动时的方位角通常大于向后摆动时的方位角,则最大值用于向前摆动,最小值用于向后摆动。基于上述想法,设计了如下步伐检测算法。在本发明实施例中,步骤s2包括以下子步骤:s21:根据步伐完成俯仰角计算第一偏移量δψ1和第二偏移量δψ2,并初始化第一偏移量δψ1和第二偏移量δψ2;s22:根据初始化后的第一偏移量δψ1和第二偏移量δψ2,计算步伐完成时人的航向γi;s23:将步伐完成时人的航向γi保存在步伐完成航向中。在本发明实施例中,在上一步步态检测算法中已经获得了其他pdr系统用于预测位置的一个关键信息:用户的前进方向即步伐完成时手机航向但是,当行人用摆臂行走时,直接将作为用户的运动方向会导致巨大的航向误差。由于摆臂的特性,手机y轴的方向并不指向运动方向。当手臂向前或向后摆动时,此偏移也有明显的区别。不难发现,航向之间的偏移量δψ和方位角ψ也在周期性地变化。在步态检测中计算的和可用于标记此周期性特征,并在完成当前步时获得用户的手臂摆动方向。因此,当中的值为最大俯仰角时,将该偏移量定义为δψ1。当中的值为最小俯仰角时,将该偏移量定义为δψ2。通过消除偏移,就可以确定真实的航向。基于上述想法,提出了如下航向估计算法。在本发明实施例中,如图1所示,步骤s21中,当步伐完成俯仰角为完成步行时最大俯仰角时,计算第一偏移量δψ1,其计算公式为:δψ1=ψ1-ψd其中,ψ1表示第一次达到最大俯仰角时的手机航向,ψd表示初始行进方向的手机航向;假设用户右手握住手机并斜着走,则挥舞手臂的过程可以直接简化为周期性地改变俯仰角。当用户将手向前挥动到最高位置时,他的左脚完成步行步骤,并且俯仰角达到最小;当用户将手向后挥动到最高位置时,他的右脚完成步行步骤,并且俯仰角达到最大。当步伐完成俯仰角中为完成步行时最小俯仰角时,计算第二偏移量δψ2,其计算公式为:δψ2=ψ2-ψd其中,ψ2表示第一次达到最小俯仰角时的手机航向。在本发明实施例中,步骤s22中,若俯仰角序列中第i个俯仰角数据θi是俯仰角序列中的最小值,则步伐完成时人的航向γi的计算公式为:γi=ψi-δψ1其中,ψi表示方位角序列中第i个方位角数据,δψ1表示第一偏移量;否则,步伐完成时人的航向γi的计算公式为:γi=ψi-δψ2其中,δψ2表示第二偏移量。在本发明实施例中,步骤s3包括以下子步骤:s31:利用惯性传感器采集行人的测量步长、俯仰角幅度ampθ和加速度振幅ampa,并进行步长拟合;s32:对步长拟合的结果进行加权处理,得到步长的初步目标函数;s33:根据步长的初步目标函数,构建最优目标函数;s34:根据最优目标函数,构建步长目标函数,并根据步长目标函数计算步伐完成步长。在本发明实施例中,在这一步中,需要得到针对摆臂行人的pdr系统定位中需要使用的另一个关键信息:步长。由于步行摆臂的周期性,可以发现俯仰角振幅以及加速度振幅都可以反映步长,并且步长与俯仰角振幅和加速度振幅成正比。在这一部分中,提出一种结合俯仰角幅度和加速度振幅数据计算步长的方法。首先,采集真实步长、俯仰角幅度和加速度振幅数据,并拟合成如下n阶泰勒展开多项式,多项式中的阶数n由经验确定,通常不超过5阶。实际上,由于测量方法以及传感器误差等原因,以上数据会有一定误差。为了减小这种误差,两个步长获得更准确和稳定的结果,对它们进行加权并获得函数。然后,以真实步长的方差为目标函数构造最优问题;通过解决约束优化问题(lp1),可以得到步长sl的最终表达式,从而获得更准确和稳定的步长结果。在本发明实施例中,步骤s31中,进行步长拟合的计算公式为:其中,sl1表示通过俯仰角振幅拟合得到的步长函数,sl2表示通过加速度振幅拟合得到的步长函数,n表示拟合阶数,k表示泰勒公式正常表达值,ampθ表示俯仰角振幅,ampa表示加速度振幅,ak表示拟合得到的第一系数,bk表示拟合得到的第二系数。在本发明实施例中,步骤s32中,步长的初步目标函数sl的表达式为:sl=a·sl1 b·sl2其中,sl满足e(sl)=a·e(sl1) b·e(sl2)=(a b)·l=l,a表示第一参数,b表示第二参数,l表示真实步长,e(sl)表示步长的初步目标函数sl的平均值,e(sl1)表示通过俯仰角振幅拟合得到的步长函数sl1的平均值,e(sl2)表示通过加速度振幅拟合得到的步长函数sl2的平均值;三个函数的真实步长都应该是l,因为是同一组实验数据获得。步骤s33中,最优目标函数mind(sl)的表达式为:其中,表示第一方差,表示第二方差;mind(sl)表示在s.t的限制条件下所能取得sl的最小方差,通过求解最优化问题就可以得到ab的具体取值。步骤s34中,步长目标函数sl′的计算公式为:在计算步伐完成步长时,通过带入参数计算得到。在本发明实施例中,对于本发明创建的改进pdr算法,以实现对带有摆臂的行人进行实时高精度定位。通过分析摆臂行走的姿势,本发明改进了传统的pdr系统并使其适用于这种情况。通过设计一些实验场景,来验证发明提出的各个算法对于行人摆臂行走时得到的航向和步长的准确性。本实验通过行人使用手机在空旷场地进行摆臂行走,得到欧拉角及加速度各项数据,通过算法生成航向和步长结果。在本实验中,主要考虑在具有摆臂的行人的情况下,提出的改进pdr系统与传统pdr系统之间的区别。与传统的基于加速度的步伐检测方法(例如峰值检测方法和零交叉检测方法)相比,观察使用俯仰角的峰值进行步伐检测的准确性。当人们用摇臂行走时,俯仰角的变化几乎是一个连续的变化过程,而加速度的变化是一个剧烈的变化过程,这使得传统的步伐检测更有可能失败。如图2所示,行人摆臂直行时,通过步态检测算法得到的行进步伐检测结果以及步伐完成时的手机航向。从图2中可以看到,俯仰角在步行过程中周期性变化,在每次俯仰角达到最大值或最小值时都能检测到一次步伐。同时,步行过程中方位角在40度-80度范围内波动。当检测到步伐的同时,能够确定手机航向,发现手机航向也在40度-80度范围波动,由于摆臂的特性,手机航向指向的方向并不完全指向运动方向,存在偏移,与前面的分析一致。接下来,比较在行人摆臂行走(不限于直行)情况下,改进pdr系统与传统pdr系统在进行步伐检测以及航向估计的准确性。在实验中,设置了两个长路径进行行人动态定位误差分析,分别是testroute1(tr1)和testroute1(tr2)。设置假阴性(fn)和假阳性(fp)两个指标衡量步伐检测的准确性。收集tr1和tr2中所有的实验数据,并在表1中统计了基于俯仰角的步伐检测算法以及其他两种算法中fp和fn的结果。表1fp(%)/fn(%)基于俯仰角的步伐检测基于加速度的峰值检测基于加速度的零交叉检测tr11.45/0.725.80/0.727.25/0.00tr21.80/0.003.60/0.009.01/0.00总计1.28/0.325.14/0.167.71/0.00显然,基于俯仰角的步伐检测算法具有较高的步伐检测成功率。尽管有时会由于阈值限制而丢失一小部分步伐(主要是因为用户的行为是不可预测的),但这部分相对于整体的影响很小,可以忽略不计。接下来比较航向估计的准确性,仍然沿着tr1和tr2的轨迹走动。在测试的每个路径中,用户首先打开应用程序,手机正对着路径,然后开始用摆臂走路。这些路线的航向估计结果如图3-图4所示。在表2中统计了传统算法和改进算法中航向估计的平均绝对误差(mae)。表2平均绝对误差(mae)/度传统pdr改进pdrtr115.442610.2628tr212.65127.2891总计21.170413.8891可以清楚地看到,本发明提出的航向算法与参考航向比较接近,传统的航向算法往往存在明显的偏差。这主要是因为在用户挥动手臂行走时,手臂的前后摆动会自然地使手机的方向偏离实际方向,这将大大增加传统算法的误差。基于上述实验结果分析,证明本发明提出的一种针对摆臂行人的改进pdr定位算法能够对带有摆臂的行人进行实时高精度定位。主要贡献是提升了行人摆臂行走时步伐检测以及航向估计的准确性,当行人在使用手机定位同时摆臂行走时,本发明将具有比传统pdr算法更高的精确度。本发明的工作原理及过程为:在本发明中,首先考虑行人使用摆臂走路的情况,并使pdr也适用于摆臂行人的场景。基于手机欧拉角,提出新的步伐检测以及航向估计算法,改善步长估计方案,使改进pdr算法在行人摆臂行走时具有更高的准确度。本发明的有益效果为:本发明通过分析摆臂行走的姿势,改进了传统的pdr系统,提升了行人摆臂行走时步伐检测以及航向估计的准确性。当行人在使用手机定位同时摆臂行走时,本发明将具有比传统pdr系统更高的精确度。本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。当前第1页1 2 3 
技术特征:1.一种针对摆臂行人的行人航位推算方法,其特征在于,包括以下步骤:
s1:利用惯性传感器采集行人的俯仰角序列、方位角序列、时间序列、惯性测量单元频率和定位周期,并计算步伐完成俯仰角和步伐完成手机航向;
s2:根据步伐完成俯仰角和步伐完成手机航向,计算步伐完成航向;
s3:利用惯性传感器采集行人的测量步长、俯仰角幅度和加速度振幅数据,并计算步伐完成步长;
s4:利用pdr算法,根据步伐完成航向和步伐完成步长进行航位推算。
2.根据权利要求1所述的针对摆臂行人的行人航位推算方法,其特征在于,所述步骤s1包括以下子步骤:
s11:利用惯性传感器采集行人的俯仰角序列方位角序列时间序列惯性测量单元频率f1和定位周期t;
s12:从俯仰角序列中获取个俯仰角数据,从时间序列中获取个时间数据;
s13:设置索引阈值δi、角度阈值δθ和时间差δt,并进行初始化;
s14:在俯仰角序列和方位角序列中,标记θi取俯仰角序列中最大值或最小值时的索引,并存入第一索引序列中,标记ψi取方位角序列中最大值或最小值时的索引,并存入第二索引序列中,其中,θi表示俯仰角序列中第i个俯仰角数据,ψi表示方位角序列中第i个方位角数据;
s15:根据第一索引序列和第二索引序列分别在俯仰角序列和时间序列中确定步伐完成俯仰角与俯仰角和方位角取得最值的时间并去除步伐完成俯仰角中最大俯仰角和最小俯仰角之差不超过初始化后俯仰角阈值δθ的俯仰角数据,去除俯仰角和方位角取得最值的时间中步距时间间隔不超过初始化后时间差δt的时间数据;
s16:选择第二索引序列中满足i-δi<j<i δi的索引,并存入第三索引序列中,若第i个俯仰角数据θi是最大值,则标记第三索引序列中第n个方位角数据ψn处于最大值的索引,否则,标记第三索引序列中第n个方位角数据ψn处于最小值的索引;
s17:基于步骤s16中标记的索引,根据方位角序列和第三索引序列确定步伐完成手机航向
3.根据权利要求1所述的针对摆臂行人的行人航位推算方法,其特征在于,所述步骤s2包括以下子步骤:
s21:根据步伐完成俯仰角计算第一偏移量δψ1和第二偏移量δψ2,并初始化第一偏移量δψ1和第二偏移量δψ2;
s22:根据初始化后的第一偏移量δψ1和第二偏移量δψ2,计算步伐完成时人的航向γi;
s23:将步伐完成时人的航向γi保存在步伐完成航向中。
4.根据权利要求3所述的针对摆臂行人的行人航位推算方法,其特征在于,所述步骤s21中,当步伐完成俯仰角为完成步行时最大俯仰角时,计算第一偏移量δψ1,其计算公式为:
δψ1=ψ1-ψd
其中,ψ1表示第一次达到最大俯仰角时的手机航向,ψd表示初始行进方向的手机航向;
当步伐完成俯仰角中为完成步行时最小俯仰角时,计算第二偏移量δψ2,其计算公式为:
δψ2=ψ2-ψd
其中,ψ2表示第一次达到最小俯仰角时的手机航向。
5.根据权利要求3所述的针对摆臂行人的行人航位推算方法,其特征在于,所述步骤s22中,若俯仰角序列中第i个俯仰角数据θi是俯仰角序列中的最小值,则步伐完成时人的航向γi的计算公式为:
γi=ψi-δψ1
其中,ψi表示方位角序列中第i个方位角数据,δψ1表示第一偏移量;
否则,步伐完成时人的航向γi的计算公式为:
γi=ψi-δψ2
其中,δψ2表示第二偏移量。
6.根据权利要求1所述的针对摆臂行人的行人航位推算方法,其特征在于,所述步骤s3包括以下子步骤:
s31:利用惯性传感器采集行人的测量步长、俯仰角幅度ampθ和加速度振幅ampa,并进行步长拟合;
s32:对步长拟合的结果进行加权处理,得到步长的初步目标函数;
s33:根据步长的初步目标函数,构建最优目标函数;
s34:根据最优目标函数,构建步长目标函数,并根据步长目标函数计算步伐完成步长。
7.根据权利要求6所述的针对摆臂行人的行人航位推算方法,其特征在于,所述步骤s31中,进行步长拟合的计算公式为:
其中,sl1表示通过俯仰角振幅拟合得到的步长函数,sl2表示通过加速度振幅拟合得到的步长函数,n表示拟合阶数,k表示泰勒公式正常表达值,ampθ表示俯仰角振幅,ampa表示加速度振幅,ak表示拟合得到的第一系数,bk表示拟合得到的第二系数。
8.根据权利要求6所述的针对摆臂行人的行人航位推算方法,其特征在于,所述步骤s32中,步长的初步目标函数sl的表达式为:
sl=a·sl1 b·sl2
其中,sl满足e(sl)=a·e(sl1) b·e(sl2)=(a b)·l=l,a表示第一参数,b表示第二参数,l表示真实步长,e(sl)表示步长的初步目标函数sl的平均值,e(sl1)表示通过俯仰角振幅拟合得到的步长函数sl1的平均值,e(sl2)表示通过加速度振幅拟合得到的步长函数sl2的平均值;
所述步骤s33中,最优目标函数mind(sl)的表达式为:
其中,表示第一方差,表示第二方差;
所述步骤s34中,步长目标函数sl′的计算公式为:
技术总结本发明公开了一种针对摆臂行人的行人航位推算方法,包括以下步骤:S1:利用惯性传感器采集行人的俯仰角序列、方位角序列、时间序列、惯性测量单元频率和定位周期,并计算步伐完成俯仰角和步伐完成手机航向;S2:计算步伐完成航向;S3:利用惯性传感器采集行人的测量步长、俯仰角幅度和加速度振幅数据,并计算步伐完成步长;S4:利用PDR算法,根据步伐完成航向和步伐完成步长进行航位推算。本发明通过分析摆臂行走的姿势,改进了传统的PDR系统,提升了行人摆臂行走时步伐检测以及航向估计的准确性。当行人在使用手机定位同时摆臂行走时,本发明将具有比传统PDR系统更高的精确度。
技术研发人员:武畅;袁环宇;游远;魏学麟;金雪敏;陈阳
受保护的技术使用者:电子科技大学;成都畅联众智科技有限公司
技术研发日:2021.03.19
技术公布日:2021.08.03