1.本发明涉及干旱检测领域,特别是涉及一种遥感干旱检测方法及系统。
背景技术:
2.由于干旱检测研究的复杂性,导致干旱检测指标众多,以遥感干旱检测为例,常用的包括温度植被干旱指数(temperature vegetation drought index,tvdi)、植被状况指数(vegetation condition index,vci)、温度状态指数(temperature condition index,tci)、作物缺水指数(crop water stress index,cwsi)等。q mu等以et、pet和ndvi等遥感数据,考虑多时间尺度特征及土壤水分亏缺和植被绿度对干旱的影响,提出了干旱严重程度指数(drought severity index,dsi),该指标弥补了传统遥感干旱指数(vci、tci、tvdi和cwsi)考虑因素过于单一的缺陷,增强了实时干旱监测的能力,以协助决策者进行区域干旱评估和减灾工作,而且不受传统干旱监测方法的诸多限制。
3.dsi在干旱监测中仅考虑到归一化植被指数(normalized difference vegetationindex,ndvi)对干旱的影响,然而在很多前人的研究均表明ndvi并不能很好地反映植被生长状态。已有的传统遥感干旱监测模型,考虑因素过于单一,很难被应用到大范围面积上的区域观测;综合遥感干旱监测模型在不同区域适用性差异较大,且计算过程较为复杂,计算过程不够简便且区域适用性较强很难被推广应用;传统的气象干旱监测,对地面观测站的空间分布、观测时间、数据连续性有较高的要求,很难实现较高精度多时间尺度连续的地表动态变化信息。因此,遥感干旱检测的准确性有待提高。
技术实现要素:
4.基于此,有必要提供一种遥感干旱检测方法及系统,考虑了植被形态指标、植被生理指标和土壤水分亏缺,解决了在全球气候变化背景下对土壤水分信息和降雨丰枯信息的评估,弥补了现有的遥感干旱指数和气象干旱指数在干旱检测中的不足,提高了遥感干旱检测的准确性。
5.为实现上述目的,本发明提供了如下方案:
6.一种遥感干旱检测方法,包括:
7.获取待检测地区在设定时间段内的遥感数据,得到序列集;所述遥感数据包括归一化植被指数、地表温度、实际蒸散发数据和潜在蒸散发数据;
8.由所述序列集中的所述归一化植被指数和所述地表温度计算植被健康指数;
9.计算所述序列集中所述实际蒸散发数据与所述潜在蒸散发数据的比值;
10.对所述植被健康指数和所述比值分别进行标准分数化,得到健康指数分数和比值分数;
11.对所述健康指数分数和所述比值分数加权求和,得到干旱指数分数;
12.对所述干旱指数分数进行标准分数化,得到改进的干旱严重程度指数;所述改进的干旱严重程度指数用于作为干旱检测指标,实现对所述待检测地区的干旱检测。
13.可选的,所述由所述序列集中的所述归一化植被指数和所述地表温度计算植被健康指数,具体包括:
14.由所述序列集中的所述归一化植被指数计算植被状况指数
[0015][0016]
其中,vci为植被状况指数,ndvi
i
为某一年第i时期的归一化植被指数的值;ndvi
min
为所有年第i时期的归一化植被指数的值中的最小值;ndvi
max
为所有年第i时期的归一化植被指数的值中的最大值;
[0017]
由所述序列集中的所述地表温度计算温度状态指数
[0018][0019]
其中,tci为温度状态指数;lst
i
为某一年第i时期的地表温度的值;lst
min
为所有年第i时期的地表温度的值中的最小值;lst
max
为所有年第i时期的地表温度的值中的最大值;
[0020]
由所述植被状况指数和所述温度状态指数计算植被健康指数
[0021]
vhi=0.5
×
vci 0.5
×
tci;
[0022]
其中,vhi为植被健康指数。
[0023]
可选的,所述对所述植被健康指数和所述比值分别进行标准分数化,得到健康指数分数和比值分数,具体包括:
[0024]
对所述植被健康指数进行标准分数化,得到健康指数分数
[0025][0026]
其中,z1为健康指数分数;vhi为植被健康指数;为植被健康指数的多年均值;σ1为植被健康指数标准差;
[0027]
对所述比值进行标准分数化,得到比值分数
[0028][0029]
其中,z2为比值分数;为比值;为比值的多年均值;et为实际蒸散发数据;pet为潜在蒸散发数据;σ2为比值的标准差。
[0030]
可选的,所述干旱指数分数的计算公式为:
[0031]
z=0.5
×
z1 0.5
×
z2;
[0032]
其中,z为干旱指数分数;z1为健康指数分数;z2为比值分数。
[0033]
可选的,所述改进的干旱严重程度指数的计算公式为:
[0034]
[0035]
其中,mdsi为改进的干旱严重程度指数;z为干旱指数分数;为干旱指数分数均值;σ
z
为改进的干旱严重程度指数标准差。
[0036]
本发明还提供了一种遥感干旱检测系统,包括:
[0037]
数据获取模块,用于获取待检测地区在设定时间段内的遥感数据,得到序列集;所述遥感数据包括归一化植被指数、地表温度、实际蒸散发数据和潜在蒸散发数据;
[0038]
植被健康指数计算模块,用于由所述序列集中的所述归一化植被指数和所述地表温度计算植被健康指数;
[0039]
比值计算模块,用于计算所述序列集中所述实际蒸散发数据与所述潜在蒸散发数据的比值;
[0040]
第一标准分数化模块,用于对所述植被健康指数和所述比值分别进行标准分数化,得到健康指数分数和比值分数;
[0041]
加权模块,用于对所述健康指数分数和所述比值分数加权求和,得到干旱指数分数;
[0042]
第二标准分数化模块,用于对所述干旱指数分数进行标准分数化,得到改进的干旱严重程度指数;所述改进的干旱严重程度指数用于作为干旱检测指标,实现对所述待检测地区的干旱检测。
[0043]
可选的,所述植被健康指数计算模块,具体包括:
[0044]
植被状况指数计算单元,用于由所述序列集中的所述归一化植被指数计算植被状况指数
[0045][0046]
其中,vci为植被状况指数,ndvi
i
为某一年第i时期的归一化植被指数的值;ndvi
min
为所有年第i时期的归一化植被指数的值中的最小值;ndvi
max
为所有年第i时期的归一化植被指数的值中的最大值;
[0047]
温度状态指数计算单元,用于由所述序列集中的所述地表温度计算温度状态指数
[0048][0049]
其中,tci为温度状态指数;lst
i
为某一年第i时期的地表温度的值;lst
min
为所有年第i时期的地表温度的值中的最小值;lst
max
为所有年第i时期的地表温度的值中的最大值;
[0050]
植被健康指数计算单元,用于由所述植被状况指数和所述温度状态指数计算植被健康指数
[0051]
vhi=0.5
×
vci 0.5
×
tci;
[0052]
其中,vhi为植被健康指数。
[0053]
可选的,所述第一标准分数化模块,具体包括:
[0054]
第一分数化单元,用于对所述植被健康指数进行标准分数化,得到健康指数分数
[0055]
[0056]
其中,z1为健康指数分数;vhi为植被健康指数;为植被健康指数多年平均值;σ1为植被健康指数标准差;
[0057]
第二分数化单元,用于对所述比值进行标准分数化,得到比值分数
[0058][0059]
其中,z2为比值分数;为比值;为比值的多年平均值;et为实际蒸散发数据;pet为潜在蒸散发数据;σ2为比值的标准差。
[0060]
可选的,所述加权模块中的所述干旱指数分数的计算公式为:
[0061]
z=0.5
×
z1 0.5
×
z2;
[0062]
其中,z为干旱指数分数;z1为健康指数分数;z2为比值分数。
[0063]
可选的,所述第二标准分数化模块中的所述改进的干旱严重程度指数的计算公式为:
[0064][0065]
其中,mdsi为改进的干旱严重程度指数;z为干旱指数分数;为干旱指数分数多年平均值;σ
z
为改进的干旱严重程度指数标准差。
[0066]
与现有技术相比,本发明的有益效果是:
[0067]
本发明提出了一种遥感干旱检测方法及系统,基于待检测地区在设定时间段内的归一化植被指数、地表温度、实际蒸散发数据和潜在蒸散发数据,并采用标准分数化以及加权求和的方法得到改进的干旱严重程度指数(modified drought severity index,mdsi)。本发明中的改进的干旱严重程度指数mdsi相较于现有的其他遥感干旱指数更接近于土壤水分信息和降雨枯丰信息,更能反映出农业干旱和气象干旱信息;将改进的干旱严重程度指数mdsi作为干旱检测指标得到的干旱检测结果,相较于现有的其他遥感干旱指数更接近土壤水分和降水丰枯信息的检测结果,也更接近于农业和气象真实的干旱程度,提高了遥感干旱检测的准确性。
附图说明
[0068]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0069]
图1为本发明实施例提供的遥感干旱检测方法的流程图;
[0070]
图2为本发明实施例提供的遥感干旱检测方法的具体实现过程图;
[0071]
图3为干旱指数与土壤水分的相关系数t检验示意图;
[0072]
图4为生长季干旱指数与土壤水分的相关系数t检验空间分布图;
[0073]
图5为九大流域生长季干旱指数与土壤水分的相关系数t检验示意图;
[0074]
图6为各植被类型生长季干旱指数与土壤水分的相关系数t检验示意图;
[0075]
图7为干旱指数与降水量的相关系数t检验示意图;
[0076]
图8为生长季干旱指数与降水量的相关系数t检验空间分布图;
[0077]
图9为九大流域生长季干旱指数与降水量的相关系数t检验示意图;
[0078]
图10为各植被类型生长季干旱指数与降水量的相关系数t检验示意图;
[0079]
图11为遥感干旱指数监测的干旱面积与国家统计局旱灾受灾总面积的相关性示意图;
[0080]
图12为本发明实施例提供的遥感干旱检测系统的结构图。
具体实施方式
[0081]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0082]
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0083]
目前,广泛使用的八种遥感干旱指数(avi,vci,vswi,tci,cwsi,tvdi,dsi和vhi)可以大体分为三类。第一类为仅考虑植被生长信息,包括avi、vci、vswi、tci、tvdi和vhi;第二类是cwsi,仅土壤水分信息,利用et和pei之间的关系来反映干旱程度;第三类是dsi,考虑了植被生长和土壤水分等信息,该模型综合了ndvi、et和pet,其中ndvi描述植被生长状况,et比pet能够更好地反映土壤水分状况。
[0084]
但考虑到dsi在描述植被生长状况时,仅考虑植被形态指标,未考虑植被生理指标,也不能很好地反映植被生物量,而vhi在一定程度上弥补了这个弊端。因此,本实施例结合植被形态指标(vci)和冠层温度指标(tci)两者的优势,计算的植被健康指数(vegetation health index,vhi)为基础,将vhi作为计算参数,代替原本的ndvi,提出了改进的干旱严重程度指数mdsi。
[0085]
图1为本发明实施例提供的遥感干旱检测方法的流程图。参见图1,本实施例遥感干旱检测方法,包括:
[0086]
步骤101:获取待检测地区在设定时间段内的遥感数据,得到序列集;所述遥感数据包括归一化植被指数、地表温度、实际蒸散发数据和潜在蒸散发数据。所述序列集为长时间序列集。
[0087]
步骤102:由所述序列集中的所述归一化植被指数和所述地表温度计算植被健康指数。
[0088]
dsi在描述植被生长状况时,仅考虑植被形态指标,未考虑植被生理指标,而冠层温度升高也会对植被生长产生一定的限制,基于以上特征选择vhi来代替ndvi。因此,步骤102中,由归一化植被指数和地表温度计算植被健康指数。
[0089]
所述步骤102,具体包括:
[0090]
由所述序列集中的所述归一化植被指数计算植被状况指数
[0091][0092]
其中,vci为植被状况指数,ndvi
i
为某一年第i时期的归一化植被指数的值;ndvi
min
为所有年第i时期的归一化植被指数的值中的最小值;ndvi
max
为所有年第i时期的归一化植被指数的值中的最大值。
[0093]
由所述序列集中的所述地表温度计算温度状态指数
[0094][0095]
其中,tci为温度状态指数;lst
i
为某一年第i时期的地表温度的值;lst
min
为所有年第i时期的地表温度的值中的最小值;lst
max
为所有年第i时期的地表温度的值中的最大值。
[0096]
由所述植被状况指数和所述温度状态指数计算植被健康指数
[0097]
vhi=0.5
×
vci 0.5
×
tci;
[0098]
其中,vhi为植被健康指数。
[0099]
步骤103:计算所述序列集中所述实际蒸散发数据与所述潜在蒸散发数据的比值。
[0100]
步骤104:对所述植被健康指数和所述比值分别进行标准分数化,得到健康指数分数和比值分数。
[0101]
所述步骤104,具体包括:
[0102]
对所述植被健康指数进行标准分数化,得到健康指数分数
[0103][0104]
其中,z1为健康指数分数;vhi为植被健康指数;为植被健康指数多年平均值;σ1为植被健康指数标准差。
[0105]
对所述比值进行标准分数化,得到比值分数
[0106][0107]
其中,z2为比值分数;为比值;为比值的多年平均值;et为实际蒸散发数据;pet为潜在蒸散发数据;σ2为比值的标准差。
[0108]
步骤105:对所述健康指数分数和所述比值分数加权求和,得到干旱指数分数。本实施例可以采用等权重的方式对所述健康指数分数和所述比值分数加权求和,所述干旱指数分数的计算公式为:
[0109]
z=0.5
×
z1 0.5
×
z2;
[0110]
其中,z为干旱指数分数;z1为健康指数分数;z2为比值分数。
[0111]
步骤106:对所述干旱指数分数进行标准分数化,得到改进的干旱严重程度指数;所述改进的干旱严重程度指数用于作为干旱检测指标,实现对所述待检测地区的干旱检
测。
[0112]
所述改进的干旱严重程度指数的计算公式为:
[0113][0114]
其中,mdsi为改进的干旱严重程度指数;z为干旱指数分数;为干旱指数分数多年平均值;σ
z
为改进的干旱严重程度指数标准差。mdsi为正值且绝对值越大,表示越湿润(湿润程度越高);mdsi为负值且绝对值越大,表示越干旱(干旱程度越高)。
[0115]
本实施例的遥感干旱检测方法的具体实现过程如图2所示。
[0116]
下面对上述实施例中的遥感干旱检测方法的有效性进行了验证。
[0117]
表1为本验证方法用于对比的其它干旱监测指标的计算公式及mdsi具体计算公式:
[0118]
表1本验证方法应用的遥感干旱指数
[0119]
[0120][0121]
表1中,*
i
为*变量某年第i时期的值,为*变量某年第i时期的均值,*
min
为*变量多年i时期的最小值,*
max
为*变量多年i时期的最大值,lst
ndvi,min
在相应ndvi下对应的最低地表温度以及在相应ndvi下对应的最高地表温度,σ
*
为*变量多年i时期的标准差。
[0122]
mdsi和dsi均是利用z分数来进行定义,它是以同期干旱指数值的标准差为单位表示某一期干旱指数值,在同期干旱时间序列中所处位置的相对位数量数,即表示原始干旱指数值在平均数以上或以下几个标准差的位置,从而明确某时期的干湿强度在整个研究期间的相对地位的量数。因此,本方法所提出的mdsi与dsi均符合正态分布(均值为0、标准差为1),具有相同的干湿监测结果,采用相同的干湿条件类别,如表2所示。
[0123]
表2 mdsi的湿润(w)和干旱(d)条件类别
[0124][0125]
本方法基于像元尺度来确定中国地区九种干旱指数与土壤水分之间的不确定性,计算了多时间尺度的九种干旱指数与土壤含水量之间的线性相关关系,并进行了相关系数t检验,可以定量描述九种干旱指数在农业旱情监测的适用性,结果见图3所示。
[0126]
由图3可知,考虑et、pet的干旱指数(cwsi、dsi、mdsi)通常比仅单一考虑ndvi、lst(avi、vci、tci)或lst为次要因素的干旱指数(vswi、tvdi)与土壤含水量的相关性更高。具体而言,3~11月mdsi比其它干旱指数表现出较强的优势,尤其在5月、8月和10月;而对于12~2月cwsi比其它干旱指数表现出较强的优势。在季度、生长季和全年,mdsi均表现出了比其它干旱指数明显的优势,这一发现是由于mdsi不仅考虑了植被生长和土壤水分,还考虑了植被生理指标信息。其次,vhi在中国地区旱情监测也具有较强地适用性,且tci整体上优于vci,mdsi整体上优于dsi,这说明了在遥感干旱指数反演中有必要考虑lst对土壤水分的影响。
[0127]
为进一步分析本验证方法,选择九种干旱指数与土壤含水量之间的相关系数t
‑
test最高的生长季来分析九种干旱指数在监测土壤含水量的区域适用性。
[0128]
如图4所示,图4中的(a)部分
‑
(i)部分分别为avi、vci、vswi、tci、cwsi、tvdi、dsi、vhi和mdsi的干旱指数与土壤含水量的空间相关性示意图,通过九种干旱指数与土壤含水量的空间相关性可以看出,各干旱指数均能较好地反映东北地区西南部的土壤水分信息;除tci、tvdi外,其余干旱指数均能较好地反映华北地区的土壤水分信息;cwsi、tvdi、dsi、vhi和mdsi均能够较好地反映青藏高原腹地的土壤水分信息;各种干旱指数在华南地区、中南地区和华东地区的农业干旱监测效果较差,但cwsi、dsi、mdsi在部分地区仍然与土壤含水量表现出较好地相关性,在中国大部分地区农业旱情监测中具有较强的适用性。对比cwsi、dsi和mdsi发现,cwsi与土壤含水量呈显著负相关的面积为46.93%,呈负相关的面积
为93.08%;dsi与土壤含水量呈显著正相关的面积为46.18%,呈正相关的面积为92.47%;mdsi与土壤含水量呈显著正相关的面积为55.12%,呈正相关的面积为95.35%,可见mdsi在呈显著相关的区域有较为明显的提高,表明mdsi更加适用于监测中国地区农业旱情监测。
[0129]
此外,本验证方法提取了九大流域和五个主要植被类型的生长季干旱指数与土壤水分的相关系数t
‑
test,如图5和图6所示。
[0130]
由图5可知,dsi、vhi和mdsi在黄河流域能够很好的反映土壤旱情信息(t
‑
test>2.92、p<0.01);dsi和mdsi在海河流域和内陆河流域能够很好的反映土壤旱情信息(t
‑
test>2.92、p<0.01);vhi和mdsi在松辽河流域能够很好的反映土壤旱情信息(t
‑
test>2.92、p<0.01);且九种干旱指数在淮河流域、珠江流域、西南流域和东南流域对于土壤旱情信息监测结果较差(t
‑
test<2.12、p>0.05),但mdsi整体上要优于其它干旱指数;此外,在长江流域仅有mdsi监测效果较好(t
‑
test>2.12、p<0.05),这表明了mdsi相较于其它干旱指数在中国地区九大流域的农业干旱监测中具有更强的适用性。
[0131]
由图6可知,vswi仅能较好地反映草原植被的土壤旱情信息(t
‑
test>2.12、p<0.05);tci仅能较好地反映沼泽植被的土壤旱情信息(t
‑
test>2.12、p<0.05);cwsi、dsi能够较好地反映草原植被和农作物植被的土壤旱情信息(t
‑
test>2.12、p<0.05);vhi能够较好地反映草原植被和沼泽植被的土壤旱情信息(t
‑
test>2.12、p<0.05);而mdsi除森林植被外,均能较好的反映植被的土壤旱情信息(t
‑
test>2.12、p<0.05),尤其是草原植被(t
‑
test>2.92、p<0.01);对于森林植被而言,九种干旱指数均不能够很好的反映土壤旱情信息,但mdsi仍然优于其它干旱指数。
[0132]
本验证方法还基于像元尺度来确定中国地区九种干旱指数与降水量之间的不确定性,计算了多时间尺度的九种干旱指数与降水量之间的线性相关关系,并进行了相关系数t检验,可以定量描述九种干旱指数在气象干旱监测的适用性,结果见图7所示。
[0133]
由图7可知,在月尺度上,通常未考虑植被生理指标的干旱指数(avi、vci、vswi)与降水量的相关性更低。具体而言,12~3月tvdi比其它干旱指数表现出较强的优势,尤其是在12月;整体上来说4~11月tci、cwsi、mdsi比其它干旱指数表现出较强的优势,尤其tci在6~8月。除冬季外,mdsi在季度、生长季和全年均表现出了比其它干旱指数明显的优势,尤其在生长季。对比mdsi与土壤含水量的相关系数t
‑
test后发现,mdsi与土壤含水量的相关系数t
‑
test明显高于与降水量的相关系数t
‑
test,这表明了相较于气象干旱监测,mdsi在农业干旱监测中具有明显的优势。
[0134]
为进一步分析,选择九种干旱指数与降水量之间的相关系数t
‑
test最高的生长季来分析九种干旱指数在监测降水丰枯的区域适用性。
[0135]
参见图8,图8中的(a)部分
‑
(i)部分分别为avi、vci、vswi、tci、cwsi、tvdi、dsi、vhi和mdsi的干旱指数与降水量的空间相关性示意图,通过图8所示的九种干旱指数与降水量的空间相关性可以看出,各干旱指数均能较好地反映东北地区西南部的降水丰枯信息,但vhi和mdsi更具有优势;tci、vhi和mdsi均能够较好地反映华北地区的降水丰枯信息;tci、tvdi和mdsi均能够较好地反映青藏高原腹地的降水丰枯信息;与土壤干旱监测相似,各种干旱指数在华南地区、中南地区和华东地区的土壤干旱监测效果较差,但mdsi仍然在部分地区与降水量表现出较好地相关性,在中国大部分地区气象干旱监测中具有较强的适
用性。对比降水丰枯反映较好的tvdi、vhi和mdsi发现,tvdi与土壤含水量呈显著负相关的面积为34.73%,呈负相关的面积为89.04%;vhi与降水量呈显著正相关的面积为42.25%,呈正相关的面积为89.36%;mdsi与降水量呈显著正相关的面积为45.11%,呈正相关的面积为93.85%,可见mdsi在呈显著相关的区域有较为明显的提高,表明mdsi更加适用于监测中国地区气象旱情监测。
[0136]
此外,本验证方法提取了九大流域和五个主要植被类型的生长季干旱指数与降水量的相关系数t
‑
test,如图9和图10所示。由图9可知,tci、vhi和mdsi在黄河流域和松辽河流域能够很好的反映降水丰枯信息(t
‑
test>2.12、p<0.05);vhi和mdsi在海河流域能够很好的反映降水丰枯信息(t
‑
test>2.12、p<0.05);除avi、vci外,其余干旱指数在内陆河流域能够很好的反映降水丰枯信息(t
‑
test>2.12、p<0.05),尤其是mdsi(t
‑
test>2.92、p<0.01);且九种干旱指数在长江流域、淮河流域、珠江流域、西南流域和东南流域对于降水丰枯信息监测结果较差(t
‑
test<2.12、p>0.05),但mdsi整体上要优于其它干旱指数,这表明了mdsi相较于其它干旱指数在中国地区九大流域的气象干旱监测中具有更强的适用性。由图10可知,tci、cwsi、tvdi、dsi、vhi和mdsi均能够较好地反映草原植被的降水丰枯信息(t
‑
test>2.12、p<0.05);对于其余植被而言,九种干旱指数均不能够很好的反映降水丰枯信息,但mdsi整体上仍然优于其它干旱指数。
[0137]
为了进一步验证遥感干旱指数和农业产量的关系,本验证方法从国家统计局中统计了2001~2018年中国地区的旱灾受灾总面积(包括:受灾面积、成灾面积和绝收面积),再根据九种干旱指数干旱指标分类标准(表3)统计出农作物的干旱面积。利用国家统计局提供的旱灾受灾总面积分别与九种干旱指数统计出的农作物干旱面积进行相关性分析,如图11所示,图11中的(a)部分
‑
(i)部分分别为avi、vci、vswi、tci、cwsi、tvdi、dsi、vhi和mdsi这九种干旱指数统计出的农作物干旱面积(监测受灾面积)与国家统计局提供的旱灾受灾总面积(实际受灾面积)的相关性示意图。
[0138]
表3各干旱指标分类标准
[0139][0140]
由图11可知,除tci、tvdi外,其余干旱指数的农作物干旱面积与国家统计局的旱灾受灾总面积相关性均通过p<0.01的显著性检验,其中vhi和mdsi的农作物干旱面积与国家统计局的旱灾受灾总面积的拟合度r2均高达0.7以上,但mdsi优于vhi,由此可见mdsi能够最好地监测出中国地区的旱灾受灾总面积,这也进一步表明mdsi可以准确的对中国地区的干旱情况进行客观的评价。
[0141]
本实施例的步骤102
‑
步骤106中,考虑到dsi在描述植被生长状况时,仅考虑植被形态指标,未考虑植被生理指标,而冠层温度升高也会对植被生长产生一定的限制。从vhi在干旱监测中优于vci和tci情况来看,在干旱监测中有必要考虑到lst对植被生长的影响。因此,结合植被形态指标(vci)和冠层温度指标(tci)两者的优势,计算的植被健康指数(vhi)为基础,将vhi作为计算参数,代替原本的ndvi,提出了改进的干旱严重程度指数。
[0142]
本实施例的遥感干旱检测方法,具有如下优点:
[0143]
该遥感干旱检测方法提供了一种简单的建模方法,提出了改进的干旱严重程度指数,建模方法简单,将ndvi替换成vhi进行建模以后的改进的干旱严重程度指数mdsi,在干旱监测方面较其它八种遥感干旱指数(avi、vci、vswi、tci、cwsi、tvdi、dsi和vhi)更接近于土壤水分信息和降雨枯丰信息,更能反映出农业干旱和气象干旱信息。
[0144]
该mdsi与土壤水分、降水量的相关性高于其它八种遥感干旱指数(avi、vci、vswi、tci、cwsi、tvdi、dsi和vhi)与土壤水分、降水量的相关性,也能够表明mdsi对干旱的检测结果较其它八种遥感干旱指数(avi、vci、vswi、tci、cwsi、tvdi、dsi和vhi)更接近土壤水分和降水丰枯信息的检测结果,对干旱的检测结果更接近于农业和气象真实的干旱程度。
[0145]
本实施例还提供了一种遥感干旱检测系统,参见图12,本实施例的遥感干旱检测系统包括:
[0146]
数据获取模块201,用于获取待检测地区在设定时间段内的遥感数据,得到序列集;所述遥感数据包括归一化植被指数、地表温度、实际蒸散发数据和潜在蒸散发数据。
[0147]
植被健康指数计算模块202,用于由所述序列集中的所述归一化植被指数和所述地表温度计算植被健康指数。
[0148]
比值计算模块203,用于计算所述序列集中所述实际蒸散发数据与所述潜在蒸散发数据的比值。
[0149]
第一标准分数化模块204,用于对所述植被健康指数和所述比值分别进行标准分数化,得到健康指数分数和比值分数。
[0150]
加权模块205,用于对所述健康指数分数和所述比值分数加权求和,得到干旱指数分数。
[0151]
第二标准分数化模块206,用于对所述干旱指数分数进行标准分数化,得到改进的干旱严重程度指数;所述改进的干旱严重程度指数用于作为干旱检测指标,实现对所述待检测地区的干旱检测。
[0152]
作为一种可选的实施方式,所述植被健康指数计算模块202,具体包括:
[0153]
植被状况指数计算单元,用于由所述序列集中的所述归一化植被指数计算植被状况指数
[0154][0155]
其中,vci为植被状况指数,ndvi
i
为某一年第i时期的归一化植被指数的值;ndvi
min
为所有年第i时期的归一化植被指数的值中的最小值;ndvi
max
为所有年第i时期的归一化植被指数的值中的最大值。
[0156]
温度状态指数计算单元,用于由所述序列集中的所述地表温度计算温度状态指数
[0157][0158]
其中,tci为温度状态指数;lst
i
为某一年第i时期的地表温度的值;lst
min
为所有年第i时期的地表温度的值中的最小值;lst
max
为所有年第i时期的地表温度的值中的最大值。
[0159]
植被健康指数计算单元,用于由所述植被状况指数和所述温度状态指数计算植被健康指数
[0160]
vhi=0.5
×
vci 0.5
×
tci;
[0161]
其中,vhi为植被健康指数。
[0162]
作为一种可选的实施方式,所述第一标准分数化模块204,具体包括:
[0163]
第一分数化单元,用于对所述植被健康指数进行标准分数化,得到健康指数分数
[0164][0165]
其中,z1为健康指数分数;vhi为植被健康指数植被健康指数多年平均值;为;σ1为植被健康指数标准差。
[0166]
第二分数化单元,用于对所述比值进行标准分数化,得到比值分数
[0167][0168]
其中,z2为比值分数;为比值;为比值多年平均值;et为实际蒸散发数据;pet为潜在蒸散发数据;σ2为比值的标准差。
[0169]
作为一种可选的实施方式,所述加权模块205中的所述干旱指数分数的计算公式为:
[0170]
z=0.5
×
z1 0.5
×
z2;
[0171]
其中,z为干旱指数分数;z1为健康指数分数;z2为比值分数。
[0172]
作为一种可选的实施方式,所述第二标准分数化模块206中的所述改进的干旱严重程度指数的计算公式为:
[0173][0174]
其中,mdsi为改进的干旱严重程度指数;z为干旱指数分数;为干旱指数分数多年平均值;σ
z
为改进的干旱严重程度指数标准差。
[0175]
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
[0176]
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
技术特征:
1.一种遥感干旱检测方法,其特征在于,包括:获取待检测地区在设定时间段内的遥感数据,得到序列集;所述遥感数据包括归一化植被指数、地表温度、实际蒸散发数据和潜在蒸散发数据;由所述序列集中的所述归一化植被指数和所述地表温度计算植被健康指数;计算所述序列集中所述实际蒸散发数据与所述潜在蒸散发数据的比值;对所述植被健康指数和所述比值分别进行标准分数化,得到健康指数分数和比值分数;对所述健康指数分数和所述比值分数加权求和,得到干旱指数分数;对所述干旱指数分数进行标准分数化,得到改进的干旱严重程度指数;所述改进的干旱严重程度指数用于作为干旱检测指标,实现对所述待检测地区的干旱检测。2.根据权利要求1所述的一种遥感干旱检测方法,其特征在于,所述由所述序列集中的所述归一化植被指数和所述地表温度计算植被健康指数,具体包括:由所述序列集中的所述归一化植被指数计算植被状况指数其中,vci为植被状况指数,ndvi
i
为某一年第i时期的归一化植被指数的值;ndvi
min
为所有年第i时期的归一化植被指数的值中的最小值;ndvi
max
为所有年第i时期的归一化植被指数的值中的最大值;由所述序列集中的所述地表温度计算温度状态指数其中,tci为温度状态指数;lst
i
为某一年第i时期的地表温度的值;lst
min
为所有年第i时期的地表温度的值中的最小值;lst
max
为所有年第i时期的地表温度的值中的最大值;由所述植被状况指数和所述温度状态指数计算植被健康指数vhi=0.5
×
vci 0.5
×
tci;其中,vhi为植被健康指数。3.根据权利要求1所述的一种遥感干旱检测方法,其特征在于,所述对所述植被健康指数和所述比值分别进行标准分数化,得到健康指数分数和比值分数,具体包括:对所述植被健康指数进行标准分数化,得到健康指数分数其中,z1为健康指数分数;vhi为植被健康指数;为植被健康指数多年平均值;σ1为植被健康指数标准差;对所述比值进行标准分数化,得到比值分数
其中,z2为比值分数;为比值;为比值多年平均值;et为实际蒸散发数据;pet为潜在蒸散发数据;σ2为比值的标准差。4.根据权利要求1所述的一种遥感干旱检测方法,其特征在于,所述干旱指数分数的计算公式为:z=0.5
×
z1 0.5
×
z2;其中,z为干旱指数分数;z1为健康指数分数;z2为比值分数。5.根据权利要求1所述的一种遥感干旱检测方法,其特征在于,所述改进的干旱严重程度指数的计算公式为:其中,mdsi为改进的干旱严重程度指数;z为干旱指数分数;为干旱指数分数多年平均值;σ
z
为改进的干旱严重程度指数标准差。6.一种遥感干旱检测系统,其特征在于,包括:数据获取模块,用于获取待检测地区在设定时间段内的遥感数据,得到序列集;所述遥感数据包括归一化植被指数、地表温度、实际蒸散发数据和潜在蒸散发数据;植被健康指数计算模块,用于由所述序列集中的所述归一化植被指数和所述地表温度计算植被健康指数;比值计算模块,用于计算所述序列集中所述实际蒸散发数据与所述潜在蒸散发数据的比值;第一标准分数化模块,用于对所述植被健康指数和所述比值分别进行标准分数化,得到健康指数分数和比值分数;加权模块,用于对所述健康指数分数和所述比值分数加权求和,得到干旱指数分数;第二标准分数化模块,用于对所述干旱指数分数进行标准分数化,得到改进的干旱严重程度指数;所述改进的干旱严重程度指数用于作为干旱检测指标,实现对所述待检测地区的干旱检测。7.根据权利要求6所述的一种遥感干旱检测系统,其特征在于,所述植被健康指数计算模块,具体包括:植被状况指数计算单元,用于由所述序列集中的所述归一化植被指数计算植被状况指数其中,vci为植被状况指数,ndvi
i
为某一年第i时期的归一化植被指数的值;ndvi
min
为所有年第i时期的归一化植被指数的值中的最小值;ndvi
max
为所有年第i时期的归一化植被指数的值中的最大值;温度状态指数计算单元,用于由所述序列集中的所述地表温度计算温度状态指数
其中,tci为温度状态指数;lst
i
为某一年第i时期的地表温度的值;lst
min
为所有年第i时期的地表温度的值中的最小值;lst
max
为所有年第i时期的地表温度的值中的最大值;植被健康指数计算单元,用于由所述植被状况指数和所述温度状态指数计算植被健康指数vhi=0.5
×
vci 0.5
×
tci;其中,vhi为植被健康指数。8.根据权利要求6所述的一种遥感干旱检测系统,其特征在于,所述第一标准分数化模块,具体包括:第一分数化单元,用于对所述植被健康指数进行标准分数化,得到健康指数分数其中,z1为健康指数分数;vhi为植被健康指数;为植被健康指数多年平均值;σ1为植被健康指数标准差;第二分数化单元,用于对所述比值进行标准分数化,得到比值分数其中,z2为比值分数;为比值;为比值多年平均值;et为实际蒸散发数据;pet为潜在蒸散发数据;σ2为比值的标准差。9.根据权利要求6所述的一种遥感干旱检测系统,其特征在于,所述加权模块中的所述干旱指数分数的计算公式为:z=0.5
×
z1 0.5
×
z2;其中,z为干旱指数分数;z1为健康指数分数;z2为比值分数。10.根据权利要求6所述的一种遥感干旱检测系统,其特征在于,所述第二标准分数化模块中的所述改进的干旱严重程度指数的计算公式为:其中,mdsi为改进的干旱严重程度指数;z为干旱指数分数;为干旱指数分数多年平均值;σ
z
为改进的干旱严重程度指数标准差。
技术总结
本发明公开了一种遥感干旱检测方法及系统。所述方法包括:获取待检测地区在设定时间段内的归一化植被指数、地表温度、实际蒸散发数据和潜在蒸散发数据,得到序列集;由归一化植被指数和地表温度计算植被健康指数;计算序列集中实际蒸散发数据与潜在蒸散发数据的比值;对植被健康指数和比值分别进行标准分数化,得到健康指数分数和比值分数;对健康指数分数和比值分数加权求和,得到干旱指数分数;对干旱指数分数进行标准分数化,得到改进的干旱严重程度指数。本发明采用改进的干旱严重程度指数用于作为干旱检测指标,实现对待检测地区的干旱检测,能提高遥感干旱检测的准确性。能提高遥感干旱检测的准确性。能提高遥感干旱检测的准确性。
技术研发人员:张强 孙鹏 马梓策 姚蕊
受保护的技术使用者:安徽师范大学
技术研发日:2021.03.19
技术公布日:2021/6/29
转载请注明原文地址:https://doc.8miu.com/read-12644.html