基于多维变量测量与多维信息诊断的变压器状态辨识方法与流程

专利2022-05-10  12



1.本发明属于电、磁、温度、噪声、振动等多变量的测量与多维信息诊断,特别涉及一种基于多维变量测量与多维信息诊断的变压器状态辨识方法。


背景技术:

2.作为电力系统的关键电力设备,变压器运行的安全可靠性直接影响电网的运行安全,提高变压器的运行可靠性,对整个电网的安全可靠运行具有十分重要的意义。目前,我国已有较多变压器运行年限超过20年,这些运行中的变压器面临着日益严重的设备故障和老化问题,发生事故的概率不断增加。变压器一旦发生事故可能会造成设备资产和停电等巨大损失,甚至会产生严重的社会影响,因此对变压器进行在线状态检修是当前国家电网急需解决的关键问题。
3.变压器检修是目前电力设备检修重点工作,变压器检修费用超过电力设备维修费用的一半以上。在无法确定变压器实际工作状态的情况下,对变压器盲目解体维修,不但会造成巨大的人力、财力浪费,而且降低了供电可靠性。变压器在线监测的提出就基于上述因素和现场需要,通过应用传感技术、检测技术和数字信号处理技术等,以变压器当前的实际工作状况为依据,通过实时的状态监测方法来判断设备的状态,对故障的严重程度、发展趋势做出判断,识别故障的早期征兆,并根据分析诊断结果在设备性能下降到一定程度或故障将要发生之前进行维修。
4.目前,国家电网公司开展大检修体系的建设,迫切需求能够对现场变压器运行状态进行诊断的技术和手段;针对电网运行中变压器故障开展有效的诊断技术与状态辨识方法研究是十分必要的。


技术实现要素:

5.发明目的本发明提供了一种基于多维变量测量与多维信息诊断的变压器状态辨识方法,其目的在于解决现场变压器运行状态辨识中判据单一和离线诊断的局限、以及效率低下、准确性不足的问题。
6.技术方案基于多维变量测量与多维信息诊断的变压器状态辨识方法,其特征在于,按照以下步骤执行:步骤一、测量变压器多维变量;变压器多维变量具体包括变压器一次侧电压信号、变压器二次侧电流信号、变压器油温信号、变压器铁芯磁场信号、变压器局放信号、变压器风扇振动信号、变压器分接开关振动信号、变压器绕组振动信号以及变压器噪声信号;步骤二、根据不同的变压器多维变量,建立变压器多维变量与多维信息的诊断模型;诊断模型具体包括信号幅值诊断模型、频域分布诊断模型和能量熵值诊断模型;步骤三、通过步骤二中的诊断模型判断测量的变压器多维变量的信号幅值、频域
分布归一化占比和能量熵值与预设诊断阈值之间的关系,进而得出诊断结果。
7.所述步骤一中,具体测量方法为:在变压器三相低压侧出线套管安装电流互感器,测量变压器二次侧电流信号i1、i2、i3;在变压器的储油柜、油枕、油箱内部顶部、油箱内部底部4个位置分别安装内置光纤传感器,测量变压器储油柜、油枕、油箱内部顶部、油箱内部底部4个位置油温t1、t2、t3、t4,计算平均值t= (t1 t2 t3 t4) *1/4,作为变压器油温信号;在变压器abc三相铁芯中点以及上下铁轭中点5个位置安装霍尔传感器,测量变压器abc三相铁芯以及上下铁轭5个位置磁感应强度b1、b2、b3、b4、b5,计算平均值b=(b1 b2 b3 b4 b5)*1/5,作为变压器铁芯磁场信号;在变压器三相高压绕组以及三相低压绕组的端部绝缘6个位置内置光纤传感器,测量变压器三相高压绕组以及三相低压绕组的端部绝缘6个位置的紫外光局放信号f1、f2、f3、f4、f5、f6,计算平均值f=(f1 f2 f3 f4 f5 f6)*1/6,作为变压器局放信号;在变压器三相高压侧出线套管安装电压互感器,测量变压器一次侧电压信号u1、u2、u3;在变压器风扇基座安装压电式加速度传感器,测量变压器风扇振动信号;在变压器分接开关操动机构的壳体表面安装压电式加速度传感器,测量变压器分接开关振动信号;在变压器绕组端部位置安装内置式光纤传感器,测量变压器绕组振动信号;靠近变压器低压侧端部对应到箱体外表面的水平位置处,安装声传感器,测量变压器噪声信号。
8.所述步骤二中,建立变压器多维变量与多维信息的信号幅值诊断模型:对比变压器二次侧电流信号幅值与第一预设诊断阈值之间关系,对比变压器油温信号幅值与第二预设诊断阈值之间关系,对比变压器铁芯磁场信号幅值与第三预设诊断阈值之间关系,对比变压器局放信号幅值与第四预设诊断阈值之间关系;所述步骤三中,具体判断方式为:如果变压器二次侧电流信号幅值超过第一预设诊断阈值,则诊断为过负荷状态;如果变压器油温信号幅值超过第二预设诊断阈值,则诊断为过热状态;如果变压器铁芯磁场信号幅值超过第三预设诊断阈值,则诊断为铁芯过饱和状态;如果变压器局放信号幅值超过第四预设诊断阈值,则诊断为绝缘击穿状态。
9.所述步骤二中,建立变压器多维变量与多维信息的频域分布诊断模型:采用傅里叶变换方法求解变压器一次侧电压信号、变压器风扇振动信号、变压器分接开关振动信号的频域分布归一化占比,对比各频域分布与预设诊断阈值之间关系;具体方法如下:采用傅里叶变换进行分析;信号的傅里叶变换定义见公式(1):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)其中,为窗函数、为时间序列函数,m是傅里叶离散矩阵的列数,y是傅里叶离散矩阵的行数,ω为采样频率,,f为频率;如果对在n个等间隔的频率处采样,n为频率维中样本数,式中m的取值应满足:r(m)≠0 ,
,l为窗的长度,在以外r(m)=0 ;表示为公式(2):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)如果,傅里叶变换表示为公式(3):
ꢀꢀꢀ
(3)其中,,进行傅里叶逆变换如公式(4):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)其中, 从y到y l

1的区间内恢复时间序列值;是加窗序列的傅里叶变换,由于时r(m)≠0,公式(4)相当于把公式(2)对f进行了采样;若将对时间y采样,则在内重构;
ꢀꢀꢀ
(5)其中,r和f均为整数,,r为时间维中的采样区间;其中,窗的长度l,在频率维中样本数n以及时间维中的采样区间r之间满足关系式;求取傅里叶变换后振动信号的频段幅值a分布如公式(6)所示,a=[a1, a2, a3, a4, a5,

a
q
]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(6)对频域分布各个频段的幅值进行求和,总频段的幅值总和a
m
见公式(7),a
m
=∑a
i
,(i=1,2,3,4,5,

q)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(7)对于给定的频域分布而言,选定某一频域范围作为目标频段,求取目标频段幅值在总频段幅值总和中的占比;则目标频段频域分布占比计算公式为公式(8):g=a
j
/a
m
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(8)其中,a
j
为目标频段的幅值,a
m
为总频段的幅值总和;所述步骤三中,具体判断方式为:对于变压器一次侧电压信号,目标频段频域分布占比为50hz以上频域分布的归一化占比,如果超过第五预设诊断阈值,则诊断为高频谐波状态;对于变压器风扇振动信号,目标频段频域分布占比为100hz以下频域分布的归一化占比,如果超过第六预设诊断阈值,则诊断为风扇故障状态;对于变压器分接开关振动信号,目标频段频域分布占比为1000hz以上频域分布的归一化占比,如果超过第七预设诊断阈值,则诊断为分接开关故障状态。
[0010]
所述步骤二中,建立变压器多维变量与多维信息的能量熵值诊断模型:用补充总体经验模态分解方法(complementary ensemble empirical mode decomposition,ceemd)将信号分解为本征模态函数,计算每个本征模态函数分量能量的归一化占比,得出能量熵值,对比变压器绕组振动信号与第八预设诊断阈值之间关系,对比变压器噪声信号的能量熵值与第九预设诊断阈值之间关系;所述补充总体经验模态分解方法是将一个多分量信号分解为有限的几个单分量信号,每个单分量信号是调频和调幅的本征模态函数(intrinsic mode functions, imf),分解过程为:首先,得到变压器绕组振动信号或变压器噪声信号的所有局部极值点,用局
部极大值点拟合信号上包络线,以及局部极小值点拟合信号下包络线,得到均值包络线,见公式(9):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(9)将信号中减去均值包络线,得到新的信号,即公式(10):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)把作为新的信号,重复上边步骤k次,两次连续筛选结果的标准差定义为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(11)其中t为测试信号对应的时间,t为测试信号的总时间;h
1(k

1)
(t)和h
1k
(t)均为重复公式(9)

(10)后处理得到的信号,h
1(k

1)
(t)为重复公式(9)

(10)后第k

1次处理得到的信号,h
1k
(t)为重复公式(9)

(10)后第k次处理得到的信号,当sd小于预设值时获得第一个本征模态函数,记;令,作为新的信号,再次重复公式(9)

(11),则得到第2、3直到第n个本征模态函数;信号用本征模态函数表示为公式(12):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(12)其中,为趋势分量,为单调函数或均值函数,代表信号的平稳趋势;c1,c2,

,c
i


,c
n
为所得到的各个本征模态函数分量,包含了信号由高频段到低频段的不同成分;变压器绕组振动信号或变压器噪声信号经过补充总体经验模态分解后得到n个本征模态函数分量和一个剩余的趋势分量,计算出n个本征模态函数分量的能量分别为,在忽略剩余分量的能量情况下,由于补充总体经验模态分解具有正交性,n个本征模态函数的能量之和应该等于原始振动信号的总能量;采用公式(17)计算每个本征模态函数分量的能量:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(17)其中,a
i
(t)是本征模态函数分量的信号各点幅值,t
i
‑1和t
i
为信号a
i
(t)对应时间区间的起止时刻,e
i
是本征模态函数分量的信号能量;采用公式(18)计算每个本征模态函数分量能量的归一化占比:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(18)其中,p
i
表示第i个本征模态函数分量的能量在整个信号能量中的比重;每个本征模态函数分量c1,c2,

,c
i


,c
n
包含不同的频率成分,且具有不同的能量,从而形成了变压器绕组振动信号能量在频率域的一种划分,由此计算补充总体经验模态分解能量熵值h
en
为,
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(19)
所述步骤三中,具体判断方式为:对于变压器绕组振动信号,如果计算的能量熵值小于第八预设诊断阈值,则诊断为绕组松动状态;对于变压器噪声信号,如果计算的能量熵值小于第九预设诊断阈值,则诊断为变压器内部变形故障状态。
[0011]
所述补充总体经验模态分解方法是在经验模态分解的基础上加入一对幅值相同、相位角相差180
°
的辅助噪声,其具体分解步骤和原理如下:(1)对信号添加i次白噪声,,白噪声以正负对形式加入,得到个信号,即公式(13)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(13)(2)分别对集合中每个信号,做补充总体经验模态分解方法分解,得到一个本征模态函数,这里计算1个固有函数
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(14)第1个余量为
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(15)(3)对于,计算k个余量:,之后分解的函数变为,系数表示信噪比,这里取常数,e(ω
i
[n]) 为补充总体经验模态分解方法分解的i个函数;则有,重复步骤(3)直到筛选终止,得到:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(16)经过系列运算后,得到一组本征模态函数。
[0012]
优点及效果:本发明所公开的一种基于多维变量测量与多维信息诊断的变压器状态辨识方法,其具有以下优点:1. 专利技术内容可以突破以往状态辨识中判据单一和离线诊断的局限,满足我国能源互联网的建设需求,引领我国电力设备状态检修领域中基于多参量监测的技术趋势。
[0013]
2. 能够有效提升在线运行变压器状态监测和诊断结果的准确性,为检修部门合理安排变压器检修运维工作提供理论依据,有利于提高电网状态检修的效率与水平,降低电网故障发生的风险。
附图说明
[0014]
附图1为本发明基于多维变量测量与多维信息诊断的变压器状态辨识方法流程
图;附图2为本发明多维变量与多维信息的信号幅值诊断模型图;附图3为本发明多维变量与多维信息的频域分布诊断模型图;附图4为本发明多维变量与多维信息的能量熵值诊断模型图;附图5为本发明实施例中变压器正常绕组振动信号;附图6为本发明实施例中变压器正常绕组imf分量信号;附图7为本发明实施例中变压器多次短路冲击后绕组振动信号;附图8为本发明实施例中变压器多次短路冲击后绕组imf分量信号。
具体实施方式
[0015]
下面结合附图对本发明进一步描述:本发明研究一种基于多维变量测量与多维信息诊断的变压器状态辨识方法,通过测量变压器一次侧电压信号、二次侧电流信号、油温信号、铁芯磁场信号、局放信号、风扇振动信号、分接开关振动信号、绕组振动信号以及噪声信号,建立多维变量与多维信息的信号幅值诊断模型、频域分布诊断模型和能量熵值诊断模型,智能辨识出变压器的过负荷状态、过热状态、绝缘击穿状态、铁芯过饱和状态、高频谐波状态、风扇故障状态、分接开关故障状态、绕组松动状态与变压器内部变形故障状态。
[0016]
具体实施过程为:一、测量变压器多维变量,包括,变压器一次侧电压信号、变压器二次侧电流信号、变压器油温信号、变压器铁芯磁场信号、变压器局放信号、变压器风扇振动信号、变压器分接开关振动信号、变压器绕组振动信号以及变压器噪声信号。
[0017]
具体测量过程为:在变压器三相高压侧出线套管安装电压互感器,测量变压器一次侧电压信号(u1、u2、u3);在变压器三相低压侧出线套管安装电流互感器,测量变压器二次侧电流信号(i1、i2、i3);在变压器的储油柜、油枕、油箱内部顶部、油箱内部底部4个位置分别安装内置光纤传感器,测量变压器储油柜、油枕、油箱内部顶部、油箱内部底部4个位置油温(t1、t2、t3、t4),计算平均值t= (t1 t2 t3 t4) *1/4,作为变压器测量的温度信号;在变压器abc三相铁芯中点以及上下铁轭中点5个位置安装霍尔传感器,测量变压器abc三相铁芯中点以及上下铁轭中点5个位置磁感应强度(b1、b2、b3、b4、b5),计算平均值b=(b1 b2 b3 b4 b5)*1/5,作为变压器测量的铁芯磁场信号;在变压器三相高压绕组以及三相低压绕组的端部绝缘6个位置内置光纤传感器,测量变压器三相高压绕组以及三相低压绕组的端部绝缘6个位置的紫外光局放信号(f1、f2、f3、f4、f5、f6),计算平均值f=(f1 f2 f3 f4 f5 f6)*1/6,作为变压器测量的局放信号;在变压器风扇基座安装压电式加速度传感器,测量变压器风扇振动信号;在变压器分接开关操动机构的壳体表面安装压电式加速度传感器,测量变压器分接开关振动信号;在变压器绕组端部位置安装内置式光纤传感器,测量变压器绕组振动信号;靠近变压器低压侧端部对应到箱体外表面的水平位置处,安装声传感器,测量变压噪声信号。
[0018]
二、如图1所示,建立多维变量与多维信息的信号幅值诊断模型、频域分布诊断模型和能量熵值诊断模型:1、如图2所示,建立多维变量与多维信息的信号幅值诊断模型:对比变压器二次侧
电流信号、变压器油温信号、变压器铁芯磁场信号和变压器局放信号的幅值与预设诊断阈值之间关系;如果变压器二次侧电流信号幅值超过第一预设诊断阈值,则诊断为过负荷状态;如果变压器油温信号幅值超过第二预设诊断阈值,则诊断为过热状态;如果变压器铁芯磁场信号幅值超过第三预设诊断阈值,则诊断为铁芯过饱和状态;如果变压器局放信号幅值超过第四预设诊断阈值,则诊断为绝缘击穿状态。
[0019]
预设诊断阈值的确定来源于《油浸式变压器(电抗器)状态评价导则》、《输变电设备状态检修试验规程》、《油浸式电力变压器技术参数和要求》、《电力设备预防性试验规程》,以及预防性试验结果。
[0020]
2、如图3所示,建立多维变量与多维信息的频域分布诊断模型:采用傅里叶变换方法求解变压器一次侧电压信号、变压器风扇振动信号、变压器分接开关振动信号的频域分布归一化占比,对比变压器一次侧电压信号、变压器风扇振动信号、变压器分接开关振动信号的频域分布与预设诊断阈值之间关系:对于变压器一次侧电压信号,目标频段频域分布占比为50hz以上频域分布的归一化占比,如果超过第五预设诊断阈值,则诊断为高频谐波状态;对于变压器风扇振动信号,目标频段频域分布占比为100hz以下频域分布的归一化占比,如果超过第六预设诊断阈值,则诊断为风扇故障状态;对于变压器分接开关振动信号,目标频段频域分布占比为1000hz以上频域分布的归一化占比,如果超过第七预设诊断阈值,则诊断为分接开关故障状态。
[0021]
诊断阈值的确定来源于《油浸式变压器(电抗器)状态评价导则》、《输变电设备状态检修试验规程》、《油浸式电力变压器技术参数和要求》、《电力设备预防性试验规程》,以及预防性试验结果。
[0022]
多维变量与多维信息的频域分布诊断具体过程为:对信号进行傅里叶变换,
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)式中,为窗函数、为时间序列函数,m是傅里叶离散矩阵的列数,y是傅里叶离散矩阵的行数,ω为采样频率,,f为频率;如果对在n个等间隔的频率处采样,式中的取值应满足:r(m)≠0
ꢀꢀ
,在以外r(m)=0。这样可表示为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)如果,那么由采样后的傅里叶变换可表示为:(3)式中, 是加窗序列的傅里叶变换,利用逆变换有:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)
式中,z(m y)为时间序列函数,n为频率维中样本数,为窗函数, ,从y到y l

1的区间内恢复时间序列值。由于时r(m)≠0,式(4)相当于把式(2)对进行了采样。若将对时间采样,则可以在,内重构。
[0023]
ꢀꢀꢀ
(5)式中,r和f均为整数,,涉及到如下整数型参数:窗的长度,n为频率维中样本数,r为时间维中的采样区间。在频率维中样本数n以及时间维中的采样区间r。选择保证可以由变换来重构加窗信号段。若,则信号段有重叠;但若,则信号的一些样本用不上。这样不能由重构原信号。采样的3个参数满足关系式。
[0024]
求取傅里叶变换后振动信号的频段幅值分布,a=[a1, a2, a3, a4, a5,

a
q
]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(6)对频域分布各个频段的幅值进行求和,总频段的幅值总和a
m
为,a
m
=∑a
i
,(i=1,2,3,4,5,

q)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(7)对于给定的频域分布而言,可以选定某一频域范围作为目标频段,求取目标频段幅值在总频段幅值总和中的占比。则目标频段频域分布占比计算公式为,g=a
j
/a
m
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(8)其中,a
j
为目标频段的幅值,a
m
为总频段的幅值总和。
[0025]
对于变压器一次侧电压信号,目标频段频域分布占比为50hz以上频域分布的归一化占比,如果超过第五预设诊断阈值,则诊断为高频谐波状态;对于变压器风扇振动信号,目标频段频域分布占比为100hz以下频域分布的归一化占比,如果超过第六预设诊断阈值,则诊断为风扇故障状态;对于变压器分接开关振动信号,目标频段频域分布占比为1000hz以上频域分布的归一化占比,如果超过第七预设诊断阈值,则诊断为分接开关故障状态。
[0026]
3、如图4所示,建立多维变量与多维信息的能量熵值诊断模型:求解绕组振动信号、噪声信号的能量熵值,对比变压器绕组振动信号、变压器噪声信号的能量熵值与预设诊断阈值之间关系,如果变压器绕组振动信号,经过补充总体经验模态分解后的能量熵值小于第八预设诊断阈值,则诊断为绕组松动状态;如果变压器噪声信号,经过补充总体经验模态分解后的能量熵值小于第九预设诊断阈值,则诊断为变压器内部变形故障状态。
[0027]
诊断阈值的确定来源于《油浸式变压器(电抗器)状态评价导则》、《输变电设备状态检修试验规程》、《油浸式电力变压器技术参数和要求》、《电力设备预防性试验规程》,以及预防性试验结果。
[0028]
多维变量与多维信息的能量熵值诊断具体过程为:补充总体经验模态分解方法是一种基于数据的自适应分解方法,其将一多分量信号分解为有限的几个单分量信号,每个单分量信号是调频和调幅的本征模态函数,分解过程为,首先,得到信号的所有局部极值点,用局部极大值点拟合信号上包络线,
以及局部极小值点拟合信号下包络线。得到均值包络线。
[0029]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(9)将信号中减去均值包络线,得到新的信号,即:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)把h1作为新的信号,重复上边步骤次,两次连续筛选结果的标准差定义为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(11)当小于某一预设值时获得第一个本征模态函数,记。
[0030]
令,作为新的信号,再次重复(9)

(11),则得到第2、3直到第个本征模态函数。于是,信号可用本征模态函数表示为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(12)式中,为趋势分量,为单调函数或均值函数,代表信号的平稳趋势;为所得到的各个imf分量,包含了信号由高频段到低频段的不同成分。
[0031]
ceemd方法通过加入一对幅值相同、相位角相差180
°
的辅助噪声,能够减少有效信号的损失,保持原信号特性,具体分解步骤和原理如下:对绕组振动信号或噪声信号添加i次白噪声,白噪声以正负对形式加入,得到个信号。即
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(13)分别对集合中每个信号做ceemd分解,得到一个,这里计算1个固有函数
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(14)第1个余量为
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(15)对于,计算k个余量:,之后分解的函数变为,e(ω
i
[n]) 为补充总体经验模态分解方法分解的i个函数,则有,重复上述过程直到筛选终止,得到:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(16)
式中:系数表示信噪比,这里取常数, e(ω
i
[n])是ceemd分解的i个函数。经过系列运算后,得到一组imf函数。
[0032]
绕组振动信号和噪声信号经过ceemd分解后可以得到n个imf分量和一个剩余分量,计算出n个imf分量的能量分别为。在忽略剩余分量的能量情况下,由于ceemd分解具有正交性,n个imf的能量之和应该等于原始振动信号的总能量。
[0033]
采用公式计算每个imf分量的能量,
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(17)其中,a
i
(t)是imf分量的信号各点幅值,t
i
‑1和t
i
为信号a
i
(t)对应时间区间的起止时刻,e
i
是imf分量的信号能量。
[0034]
采用公式计算每个imf分量能量的归一化占比,
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(18)式中,p
i
表示第i个imf分量的能量在整个信号能量中的比重。
[0035]
每个imf分量包含不同的频率成分,且具有不同的能量,从而形成了变压器绕组振动信号能量在频率域的一种划分,由此可计算ceemd能量熵值为,
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(19)对于变压器绕组振动信号,如果计算的能量熵值小于第八预设诊断阈值,则诊断为绕组松动状态;对于变压器噪声信号,如果计算的能量熵值小于第九预设诊断阈值,则诊断为变压器内部变形故障状态。
实施例
[0036]
以一台500kva、35kv变压器的绕组振动信号为例,说明建立的多维变量与多维信息的能量熵值诊断模型实施过程:测试绕组振动信号,计算经过补充总体经验模态分解后的能量熵值,对比绕组振动信号的能量熵值与预设诊断阈值之间关系,如果绕组振动信号,经过补充总体经验模态分解后的能量熵值大于诊断阈值,则诊断为正常状态;如果绕组振动信号,经过补充总体经验模态分解后的能量熵值小于诊断阈值,则诊断为绕组松动状态。
[0037]
开展500kva、35kv变压器正常绕组以及多次短路冲击后绕组振动测试实验。首先测试一台变压器正常绕组振动信号如图5所示。建立多维变量与多维信息的能量熵值诊断模型。采用补充总体经验模态分解方法,根据公式(9)

(19)提取振动数据的imf分量如图6所示,由公式(17)

(19)计算所有imf分量的归一化能量和能量熵值,计算正常绕组变压器绕组振动信号ceemd分解后imf分量的能量熵值如表1所示。根据预防性试验可知,此类变压器松动绕组振动信号,经过补充总体经验模态分解后的能量熵值的第八预设诊断阈值为
0.5529。对图表分析可知,该台变压器绕组能量熵值为0.6659,大于预设诊断阈值0.5529;通过多维变量与多维信息的能量熵值诊断模型诊断结果为:正常状态。
[0038]
表1然后测试一台变压器多次短路冲击后绕组振动信号如图7所示。建立多维变量与多维信息的能量熵值诊断模型。采用补充总体经验模态分解方法,根据公式(9)

(19)提取振动数据的imf分量如图8所示,由公式(17)

(19)计算所有imf分量的归一化能量和能量熵值,计算多次短路冲击后绕组变压器绕组振动信号ceemd分解后imf分量的能量熵值如表2所示。根据预防性试验可知,此类变压器松动绕组振动信号,经过补充总体经验模态分解后的能量熵值的第八预设诊断阈值为0.5529。多次短路冲击后该台变压器绕组能量熵值为0.4268,小于给定的第八预设诊断阈值0.5529。通过多维变量与多维信息的能量熵值诊断模型诊断结果为:绕组松动状态。
[0039]
表2以上技术特征构成了本发明的实施例,其具有较强的适应性和实施效果,可根据实际需要增减非必要的技术特征,来满足不同情况的需求。
转载请注明原文地址:https://doc.8miu.com/read-1450208.html

最新回复(0)