一种压铸参数优化方法、装置、终端设备及存储介质与流程

专利2022-05-10  4



1.本发明涉及模型构建技术领域,具体涉及一种压铸参数优化方法、装置、终端设备及存储介质。


背景技术:

2.在压铸产品设计、生产过程中,压铸机、模具及压铸周边设备的工艺参数,对批量生产的良品率与单件产品的缺陷与性能有较大的影响。对于现有压铸产品,往往使用模流分析等有限元分析方法结合试生产实验,对产品的生产状态进行分析,协助验证工艺参数的有效性。对于尺寸较大、成本较高的产品与模具,开机实验的成本较高,且需要承担模具发生损坏的风险。而使用有限元分析法进行仿真,耗时较长,难以在长线的产品迭代修改过程中反复进行。


技术实现要素:

3.因此,本发明要解决的技术问题在于克服现有技术中的上述缺陷,从而提供一种压铸参数优化方法、装置、终端设备及存储介质。
4.本发明提供了一种压铸参数优化方法,所述方法具体包括如下步骤:s1:数据采样,输入数据采样,根据设备的输入参数类型及可行域,通过拉丁超立方抽样法进行采样,得到输入数据yy,经压铸过程生产试验或仿真分析,得到输入数据yy中每一项样本对应的输出数据zz,得到一组输入输出采样;s2:构建神经网络,并通过遗传算法ga对神经网络的结构进行优化;s3:基于构建代理模型,利用s2构建的神经网络对代理模型进行训练,得到训后代理模型;s4:求解训后代理模型的最优解集,基于训后代理模型,利用启发式算法对输入数据的范围进行搜索,以训后代理模型作为启发式算法中的系统,以工艺参数为输入,以产品性能为评价值。
5.优选地,步骤s1具体包括如下步骤:s11:记可操作的输入参数为输入,其对应可行域的范围为;需要优化的产品性能为输出,其对应可行域的范围为,经压铸过程生产试验或仿真分析得到的精确模型为,满足:,;
s12:以其中一组最优解为中心,根据所需数据集大小,基于拉丁超立方抽样法进行采样,得到输入数据,;s13:经数值模拟或压铸过程生产试验,得到中每一项样本对应的输出数据zz,即:,最终得到一组输入输出采样,用于建模。
6.优选地,步骤s2具体包括如下步骤:s21:构建用于训练代理模型的反向传播神经网络bp;s22:以反向传播神经网络bp的结构与初始权重作为遗传算法ga的输入,以反向传播神经网络bp的训练过程作为遗传算法ga的系统,以反向传播神经网络bp优化后的误差作为遗传算法ga的评价值;s23:按照的格式生成一系列随机染色体,经过系统计算后对输出结果进行评价,得到输入染色体的评价值;s24:舍弃评价值低的个体,选取评价值最高的个体加入下一代种群,进一步进行交叉、变异操作,如此迭代,最终评价值达到趋于稳定或达到预期范围;s25:优化反向传播神经网络bp的结构与初始权重的最优解;s26:重复s22至s25,进一步优化神经网络的结构。
7.优选地,所述s3中,代理模型包括激活函数和权值,代理模型的训练为权值的训练,训练步骤包括:s31:输入数据yy从输入层经过多层隐含层到输出层,期间经过多重的激活函数变换;s32:得到的输出数据与预期输出数据的差异反向影响到前面的权值,对上一层的权值进行修改;s33:修改逐层反馈,更新一次运算中所有权值,最终输出数据与预期输出数据的差异在下一次运算中降低;s34:重复s32和s33,直至最终输出数据与预期输出数据的差异下降梯度为零。
8.优选地,s4还包括如下步骤:针对理想的输出结果和限制条件,求解获得对应帕累托最优解集,并结合工程实际从中选出能够实现的最优输入,经过仿真和实验验证,有。
9.优选地,所述输入参数包括金属液温度、模具温度、快压射速度、速度切换点、压射时间、铸造压力;需要优化的产品性能包括缺陷、性能、生产周期、平均良品率。
10.优选地,所述神经网络的结构包括隐含层数、节点数、激活函数类型。
11.本发明还提供了一种压铸工艺参数的优化装置,包括:数据采样模块,用于得到输入输出采样;模型构建及优化模块,用于构建用于训练代理模型的神经网络,并通过遗传算法ga对神经网络的结构进行优化;代理模型训练模块,基于,对代理模型进行训练,得到训后代理模型;代理模型求解模块;利用启发式算法对输入数据的范围进行搜索,实现对训后代理模型最优解集的求解。
12.本发明还提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的方法。
13.本发明还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的方法。
14.本发明提供的一种压铸参数优化方法、装置、终端设备及存储介质,本方法相较于有限元分析法,能够以较快的速度和较低运算资源生成代理模型,对压铸生产工艺参数进行验证。使用本方法,能够快速对设计得到的修改结果进行初步认证,以便于迭代设计的进行。进一步的,能够对生成的代理模型进行解算,获得更优的工艺参数,为设计者进行工艺参数的选用与调整提供参考,提升产品性能和生产效率。
附图说明
15.为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
16.图1为本发明提供的一种压铸参数优化方法的流程示意图;图2为本发明提供的一种反向传播神经网络bp的结构示意图;图3为本发明提供的神经网络优化过程图;图4为本发明提供的代理模型训练过程图;图5为本发明提供的一种压铸工艺参数的优化装置的结构示意图;图6为本发明提供的一种终端设备的结构示意图。
具体实施方式
17.下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
18.在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、
以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
19.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
20.此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
21.实施例1如图1所示,本实施例提供了一种压铸参数优化方法,所述方法具体包括如下步骤:s1:根据压铸相关设备的输入参数类型及可行域,基于拉丁超立方抽样法进行采样,得到输入数据yy,经压铸过程生产试验或仿真分析,得到对应输入数据yy的每一项样本的输出数据zz,最终得到一组输入输出采样。
22.在现有的生产或仿真过程中,能够得到产品生产工艺的大致区间及可行的一组或数组工艺参数,以获得满足预期需求的产品。
23.步骤s1具体包括如下步骤:s11:记可操作的输入参数为输入,其对应范围为;需要优化的产品性能为输出z,其对应范围为,经压铸过程生产试验或仿真分析得到的精确模型为,满足:,;所述输入参数包括但不限于金属液温度、模具温度、快压射速度、速度切换点、压射时间、铸造压力;需要优化的产品性能包括但不限于缺陷、性能、生产周期、平均良品率。
24.s12:以其中一组最优解为中心,根据所需数据集大小,基于拉丁超立方抽样法进行采样,得到输入数据,使得:;为了进行较为合理的建模,其基础数据输入需要均匀分布在中。
25.s13:经压铸过程生产试验或仿真分析,得到对应输入数据的每一项样本的输出数据zz,即:,最终得到一组输入输出采样,用于建模。
26.s2:构建用于训练代理模型的神经网络,通过遗传算法ga对神经网络的结构进行优化。
27.步骤s2具体包括如下步骤:
s21:构建用于训练代理模型的反向传播神经网络bp,其结构如图2所示;s22:分别以反向传播神经网络bp的结构与初始权重作为遗传算法ga的输入,对应的输入空间为f
e
,以神经网络的训练过程作为遗传算法ga的系统,以神经网络优化后的误差作为遗传算法ga的评价值;所述神经网络的结构包括隐含层数、节点数、激活函数类型;s23:按照的格式生成一系列随机染色体,经过系统计算后对输出结果进行评价,得到输入染色体的评价值;s24:舍弃评价值低的个体,仅选取评价值最高的个体加入下一代种群,进一步进行交叉、变异操作,如此迭代,最终评价值达到趋于稳定或达到预期范围,即可认为对应染色体为最优解,这种交叉、变异的迭代方式使得个体能够较好地遍历整个输入空间f
e
,避免陷入局部最优解;s25:经优化得到神经网络的结构与初始权重的最优解,重复上述步骤进一步优化神经网络的结构。
28.在本实施例中,对神经网络进行优化的过程如图3所示,图中纵坐标为神经网络优化后的误差,可以看出,随着迭代次数的增加,误差越来越小,最终评价值达到趋于稳定。
29.s3:基于,对代理模型进行训练,最终得到训练后的代理模型,使得。
30.步骤s3具体包括如下步骤:s31:神经网络代理模型中,每两个节点之间都存在激活函数和对应的权值,激活函数基于权值和输入生成输出;对代理模型的训练过程即为对权值的训练过程;s32:输入数据yy从输入层经过多层隐含层到输出层,期间经过多重的激活函数变换;s33:得到的输出与预期输出间的差异,如均方误差mse反向影响到前面的权值,对上一层的权值进行修改;s34:修改逐层反馈,最终在一步运算中,所有权值都得到了更新,在下一步的运算阶段,最终的差异得到降低;s35:经过多步训练,最终输出与预期输出的差异下降梯度为零,即实现了代理模型的训练。代理模型中的权值即为反应输入输出间关系的数学模型。
31.在本实施例中,对代理模型进行训练的过程如图4所示,图中纵坐标为输出与预期输出间的差异,可以看出,经过多步训练,最终输出与预期输出的差异下降梯度接近于零。
32.s4:在得到训练后的训后代理模型后,利用启发式算法对输入数据的范围进行快速、全局性搜索,实现对训后代理模型最优解集的求解。
33.步骤s4具体包括如下步骤:
s41:在得到训后代理模型后,利用启发式算法对输入数据的范围进行快速、全局性搜索,以训后代理模型作为启发式算法中的系统,以工艺参数为输入,以产品性能为评价值,实现对代理模型最优解集的求解;启发式算法包括进化策略、遗传算法、粒子群算法、模拟退火算法等。
34.s42:针对理想的输出结果和限制条件,求解获得对应帕累托最优解集,并结合工程实际从中选出能够实现的最优输入,经过仿真和实验验证,有。
35.最终得到的在所要进行的优化方向上优于,即实现了压铸工艺的优化。与的差异反映了该流程优化效果,可作为评估建模及求解过程有效性的指标。
36.本实施例提供的一种压铸参数优化方法,相较于有限元分析法,能够以较快的速度和较低运算资源生成代理模型,对压铸生产工艺参数进行验证。使用本方法,能够快速对设计得到的修改结果进行初步认证,以便于迭代设计的进行。进一步的,能够对生成的代理模型进行解算,获得更优的工艺参数,为设计者进行工艺参数的选用与调整提供参考,提升产品性能和生产效率。
37.实施例2如图5所示,本实施例提供了一种压铸工艺参数的优化装置,包括:数据采样模块,用于根据压铸相关设备的输入参数类型及可行域,基于拉丁超立方抽样法进行采样,得到输入数据yy,经压铸过程生产试验或仿真分析,得到对应输入数据yy的每一项样本的输出数据zz,最终得到一组输入输出采样;模型构建及优化模块,用于构建用于训练代理模型的神经网络,通过遗传算法ga对神经网络的结构进行优化;模型训练模块,用于基于,对代理模型进行训练,最终得到训后代理模型;模型求解模块;用于在得到训后代理模型后,利用启发式算法对输入数据的范围进行快速、全局性搜索,实现对训后代理模型最优解集的求解。
38.应理解的是,该装置与上述的压铸参数优化方法实施例对应,能够执行上述方法实施例涉及的各个步骤,该装置具体的功能可以参见上文中的描述,为避免重复,此处适当省略详细描述。该装置包括至少一个能以软件或固件(firmware)的形式存储于存储器中或固化在装置的操作系统(operating system,os)中的软件功能模块。
39.实施例3如图6所示,本实施例提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的方法。
40.本实施例还提供了一种计算机可读的存储介质,所述计算机可读的存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的方法。
41.其中,存储介质可以由任何类型的易失性或非易失性存储设备或者它们的组合实
现,如静态随机存取存储器(static random access memory,简称sram),电可擦除可编程只读存储器(electrically erasable programmable read

only memory,简称eeprom),可擦除可编程只读存储器(erasable programmable read only memory,简称eprom),可编程只读存储器(programmable red

only memory,简称prom),只读存储器(read

only memory,简称rom),磁存储器,快闪存储器,磁盘或光盘。
42.本技术提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其他的方式实现。以上所描述的装置实施例仅是示意性的,例如,附图中的流程图和框图显示了根据本技术实施例的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以和附图中所标注的发生顺序不同。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这主要根据所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以使用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
43.另外,在本技术实施例中的各个实施例的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
44.本发明提供的一种压铸参数优化方法、装置、设备及存储介质,相较于有限元分析法,能够以较快的速度和较低运算资源生成代理模型,对压铸生产工艺参数进行验证。使用本方法,能够快速对设计得到的修改结果进行初步认证,以便于迭代设计的进行。进一步的,能够对生成的代理模型进行解算,获得更优的工艺参数,为设计者进行工艺参数的选用与调整提供参考,提升产品性能和生产效率。
45.显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
转载请注明原文地址: https://doc.8miu.com/read-1550327.html

最新回复(0)