本发明属于电力需求响应领域,特别提出了一种基于部分线性模型的建筑暖通空调负荷优化控制方法。
背景技术:
随着全球城市化进程的加快,建筑业消耗着越来越多的能源,造成了全球近40%的温室气体排放。在建筑的能耗中,暖通空调系统的占比达到了近50%。由于建筑的热惰性,暖通空调是一种典型的电热耦合负荷,可以在短时间内调整用电需求而几乎不影响用户舒适度,具有向电网提供灵活性的潜力。适当的需求侧管理可以极大地提高电网运行的经济性,而这需要暖通空调负荷的建模与优化控制。
许多文献证实了暖通空调系统在需求响应方面的应用,如针对实时价格执行室内温度的最优控制(haoh,corbincd,kalsik,etal.transactivecontrolofcommercialbuildingsfordemandresponse[j].ieeetransactionsonpowersystems,2017:1-1.)。然而,现有文献大多是基于建筑物暖通空调负荷的电热特性已知的假设,且所使用的模型较为简单,难以描述真实建筑的暖通空调负荷。一些研究讨论了实际建筑物的监测和模型参数估计,例如基于卡尔曼滤波的建筑能耗模型参数和未知状态的双重估计(baldis,yuans,endelp,etal.dualestimation:constructingbuildingenergymodelsfromdatasampledatlowrate[j].appliedenergy,2016,169:81-92.)。暖通空调负荷模型的参数可以通过分析或实验方法估算,但需要完整的建筑结构信息或者专门的实验。在大规模应用中,这两种方法都是难以实施的。一些研究采用数据驱动的方法进行建模和优化控制,如使用机器学习预测暖通空调负荷并将其作为虚拟电池进行控制(wangj,huangs,wud,etal.operatingacommercialbuildinghvacloadasavirtualbatterythroughairflowcontrol[j].ieeetransactionsonsustainableenergy,2020,pp(99):1-1.),训练人工神经网络预测办公楼室内温度以实现暖通空调系统的最优需求响应(kimyj.asupervised-learning-basedstrategyforoptimaldemandresponseofanhvacsysteminamulti-zoneofficebuilding[j].ieeetransactionsonsmartgrid,2020,pp(99):1-1.)。这些数据驱动方法具有更好的预测性能,但通常缺乏可解释性,并且需要较大的计算量才能找到最优控制策略。
综上,已有的暖通空调负荷的简单模型无法应用于真实场景;数据驱动模型过于复杂,难以在此基础上进行优化控制。
技术实现要素:
本发明的目的是为克服已有技术的不足之处,提出一种基于部分线性模型的建筑暖通空调负荷优化控制方法。本发明建立的暖通空调模型同时具有可解释性与较高的预测精度,该方法计算简便,得到的优化结果可在提升电网运行效率的同时降低建筑物的能耗成本。
本发明提出一种基于部分线性模型的建筑暖通空调负荷优化控制方法,其特征在于,该方法首先分别建立建筑的热惰性模型和暖通空调系统模型,对该两个模型进行转化后得到包含线性部分和数据驱动部分的暖通空调负荷预测模型,利用历史数据拟合得到该暖通空调负荷预测模型的参数;然后根据该暖通空调负荷预测模型,建立建筑室内温度的优化模型,对优化模型求解,计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。该方法包括以下步骤:
1)建立建筑暖通空调负荷预测模型;具体步骤如下:
1-1)建立物理模型;具体如下:
1-1-1)建立建筑的热惰性模型,如式(1)所示:
其中,
pt(t)=ps(t) pg(t)(2)
其中,c表示建筑内部空气的等效热容,ti(t)表示t时刻室内空气的温度,pt(t)表示t时刻对空气的有效冷却或加热功率,to(t)表示t时刻室外温度,r表示建筑墙体的等效热阻;ps(t)表示t时刻暖通空调供给的冷却或加热功率,pg(t)表示t时刻除暖通空调外其他因素的产热之和;
1-1-2)建立暖通空调系统模型,如式(3)-(5)所示:
tm(t)=δti(t) (1-δ)to(t)(3)
ps(t)=cpq(t)(tc-ti(t))(5)
其中,tm(t)表示经过回风混合后t时刻的空气温度,δ表示回风比例;tc为空气温度的设定值,p(t)为t时刻暖通空调的冷却或制热机组的电负荷,cp表示空气的定压比热容,q(t)表示t时刻送风流量,cop表示暖通空调的冷却或制热机组的循环效率,制冷时tc小于tm(t),制热时tc大于tm(t);ps(t)为t时刻送风给室内空气提供的冷却或加热功率,ps(t)小于零表示制冷,ps(t)大于零表示制热;
1-2)将步骤1-1)的物理模型转化为部分线性模型,建立暖通空调负荷预测模型;
将式(1)写成离散时间下的差分方程得到式(6),将式(2)写成离散时间形式得到式(7),其中下标k表示第k个离散时间点,
结合式(6)-(8),得到暖通空调电负荷的表达式,如式(9)所示:
将式(9)进一步简化为式(10),得到最终的暖通空调负荷预测模型,该模型包含线性部分和数据驱动部分,其中a1,a2,a3,a4为模型中线性部分的系数;dk为影响
式中,
1-3)利用历史数据拟合暖通空调负荷预测模型的参数;
从历史数据中选取一段长度为n用于训练的数据,将自变量矩阵记为x=[td],其中t,d分别如式(11)(12)所示,分别表示线性部分的输入数据矩阵与数据驱动部分的输入数据矩阵;因变量矩阵记为y=[p1p2…pn]t;
任意指定a0与f0(dk)的参数以完成初始化,然后采用轮流拟合线性部分和数据驱动部分的方法进行多次迭代,其中,记第i次迭代完成后,线性部分的系数矩阵为
d=[d1d2…dn]t(12)
2)根据步骤1)得到的暖通空调负荷预测模型,对建筑室内温度进行优化;具体步骤如下:
2-1)建立建筑室内温度的优化模型,表达式如下:
其中,
其中,设定室内温度为一恒定值tb,
rk表示时间点k的实时电价,nk表示优化的时段长度,tl和tu分别为室内温度的下限和上限;
2-2)求解步骤2-1)建立的优化模型:
将步骤2-1)建立的优化模型简化为式(18):
fork∈{1,2,…,nk}
如式(18)所示的模型存在解析解,如式(19)所示:
利用式(19),在每一个当前时间点计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。
本发明的特点及有益效果:
本发明填补能了兼顾准确性和可解释性的暖通空调负荷建模方法的技术空白,提出了一种基于物理模型和数据驱动模型相结合的部分线性化暖通空调负荷模型;本方法提出的模型分为线性部分和非线性部分,其中线性部分根据暖通空调负荷的物理特性推导,非线性部分采用数据驱动的方法预测环境因素的复杂影响;在此基础上,提出了一种模型预测控制策略以减少用电费用。本方法考虑了实际建筑暖通空调的物理特性,结合了物理模型与数据驱动模型,使预测模型同时具有可解释性与较高的预测精度,并能够在此基础上以较小的计算量得到最优的室内温度值,在室内温度保持在一定舒适范围内的前提下降低建筑物能耗成本;同时为电网提供削峰填谷的需求响应服务,提升了电网运行的效率。
附图说明
图1是本发明的基于部分线性模型的建筑暖通空调负荷优化控制方法的流程图。
具体实施方式
本发明提出的基于部分线性模型的建筑暖通空调负荷优化控制方法,下面结合附图及具体实施方式进一步详细的说明;应当理解,此处所描述的具体实施方式可用以解释本发明,但并不限定本发明;
本发明提出的基于部分线性模型的建筑暖通空调负荷优化控制方法,该方法首先分别建立建筑的热惰性模型和暖通空调系统模型,对该两个模型进行转化后得到包含线性部分和数据驱动部分的暖通空调负荷预测模型,利用历史数据拟合得到该暖通空调负荷预测模型的参数;然后根据该暖通空调负荷预测模型,建立建筑室内温度的优化模型,对优化模型求解,计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。该方法整体流程如图1所示,具体步骤如下:
1)建立建筑暖通空调负荷预测模型,包括3个部分:建立物理模型、将物理模型转化为部分线性模型、用历史数据拟合模型;具体步骤如下:
1-1)建立物理模型;具体如下:
1-1-1)建立建筑的热惰性模型:
由于建筑墙体以及内部物体的导热、储热特性非常复杂,因此使用等效热参数模型来简化地描述建筑的热惰性,如式(1)所示:
其中,
pt(t)=ps(t) pg(t)(2)
其中c表示建筑内部空气的等效热容,ti(t)表示t时刻室内空气的温度,pt(t)表示t时刻对空气的有效冷却/加热功率,to(t)表示t时刻室外温度,r表示建筑墙体的等效热阻;pt(t)由式(2)给出,其中ps(t)表示t时刻暖通空调供给的冷却/加热功率,pg(t)表示t时刻除暖通空调外其他因素的产热之和,如室内居民、电器、太阳辐射等;
1-1-2)建立暖通空调系统模型:
暖通空调系统的模型一般可以由式(3)-(5)给出;室内回风进入回风管道,一部分排出建筑,并替换为等量的室外空气,混合后t时刻的空气温度tm(t)由式(3)所示,其中δ表示回风比例;混合后的空气进入冷却或制热机组,空气温度变化到设定值tc,t时刻暖通空调的冷却或制热机组的电负荷p(t)如式(4)所示,其中cp表示空气的定压比热容,q(t)表示t时刻送风流量,cop表示暖通空调的冷却或制热机组的循环效率,制冷时tc小于tm(t),制热时tc大于tm(t);暖通空调冷却或加热后的空气通过风扇被送入建筑各个区域,t时刻送风给室内空气提供的冷却或加热功率ps(t)由式(5)所示,ps(t)小于零表示制冷,ps(t)大于零表示制热;
tm(t)=δti(t) (1-δ)to(t)(3)
ps(t)=cpq(t)(tc-ti(t))(5)
1-2)将步骤1-1)的物理模型转化为部分线性模型,建立暖通空调负荷预测模型:
将式(1)写成离散时间下的差分方程得到式(6),将式(2)写成离散时间形式得到式(7),其中下标k表示第k个离散时间点,
式中,
1-3)利用历史数据拟合暖通空调负荷预测模型的参数;
为了拟合式(10)表示的模型,采用轮流拟合线性部分和数据驱动部分的方法,进行多次迭代直至收敛;从历史数据中选取一段长度为n用于训练的数据(数据长度应至少覆盖一周以上的时间,一般数据量越多,模型的拟合效果越好;本例中数据长度覆盖三十天,时间颗粒度为一小时,则n=720),自变量矩阵记为x=[td],其中t,d分别如式(11)(12)所示,分别表示线性部分的输入数据矩阵与数据驱动部分的输入数据矩阵;因变量矩阵记为y=[p1p2…pn]t;记第i次迭代完成后,线性部分的系数矩阵为
d=[d1d2…dn]t(12)
2)根据步骤1)得到的暖通空调负荷预测模型,在实时电价的激励下对建筑室内温度进行优化;具体步骤如下:
2-1)建立建筑室内温度的优化模型,表达式如下:
其中,
假定建筑暖通空调不参与需求响应时,室内温度为一恒定值tb,将此时的负荷作为时间点k的基值
最优的室内温度可以通过求解式(13)和(14)所示的优化模型得到,其中rk表示时间点k的实时电价,nk表示优化的时段长度,tl和tu分别为室内温度的下限和上限;
2-2)求解步骤2-1)建立的优化模型:
步骤2-1)建立的优化模型可以简化为式(18);该优化模型存在解析解,其解如式(19)所示。
fork∈{1,2,…,nk}
利用式(19),可以在每一个当前时间点计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。
1.一种基于部分线性模型的建筑暖通空调负荷优化控制方法,其特征在于,该方法首先分别建立建筑的热惰性模型和暖通空调系统模型,对该两个模型进行转化后得到包含线性部分和数据驱动部分的暖通空调负荷预测模型,利用历史数据拟合得到该暖通空调负荷预测模型的参数;然后根据该暖通空调负荷预测模型,建立建筑室内温度的优化模型,对优化模型求解,计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。
2.如权利要求1所述的方法,其特征在于,该方法包括以下步骤:
1)建立建筑暖通空调负荷预测模型;具体步骤如下:
1-1)建立物理模型;具体如下:
1-1-1)建立建筑的热惰性模型,如式(1)所示:
其中,
pt(t)=ps(t) pg(t)(2)
其中,c表示建筑内部空气的等效热容,ti(t)表示t时刻室内空气的温度,pt(t)表示t时刻对空气的有效冷却或加热功率,to(t)表示t时刻室外温度,r表示建筑墙体的等效热阻;ps(t)表示t时刻暖通空调供给的冷却或加热功率,pg(t)表示t时刻除暖通空调外其他因素的产热之和;
1-1-2)建立暖通空调系统模型,如式(3)-(5)所示:
tm(t)=δti(t) (1-δ)to(t)(3)
ps(t)=cpq(t)(tc-ti(t))(5)
其中,tm(t)表示经过回风混合后t时刻的空气温度,δ表示回风比例;tc为空气温度的设定值,p(t)为t时刻暖通空调的冷却或制热机组的电负荷,cp表示空气的定压比热容,q(t)表示t时刻送风流量,cop表示暖通空调的冷却或制热机组的循环效率,制冷时tc小于tm(t),制热时tc大于tm(t);ps(t)为t时刻送风给室内空气提供的冷却或加热功率,ps(t)小于零表示制冷,ps(t)大于零表示制热;
1-2)将步骤1-1)的物理模型转化为部分线性模型,建立暖通空调负荷预测模型;
将式(1)写成离散时间下的差分方程得到式(6),将式(2)写成离散时间形式得到式(7),其中下标k表示第k个离散时间点,
结合式(6)-(8),得到暖通空调电负荷的表达式,如式(9)所示:
将式(9)进一步简化为式(10),得到最终的暖通空调负荷预测模型,该模型包含线性部分和数据驱动部分,其中a1,a2,a3,a4为模型中线性部分的系数;dk为影响
式中,
1-3)利用历史数据拟合暖通空调负荷预测模型的参数;
从历史数据中选取一段长度为n用于训练的数据,将自变量矩阵记为x=[td],其中t,d分别如式(11)(12)所示,分别表示线性部分的输入数据矩阵与数据驱动部分的输入数据矩阵;因变量矩阵记为y=[p1p2...pn]t;
任意指定a0与f0(dk)的参数以完成初始化,然后采用轮流拟合线性部分和数据驱动部分的方法进行多次迭代,其中,记第i次迭代完成后,线性部分的系数矩阵为
d=[d1d2...dn]t(12)
2)根据步骤1)得到的暖通空调负荷预测模型,对建筑室内温度进行优化;具体步骤如下:
2-1)建立建筑室内温度的优化模型,表达式如下:
其中,
其中,设定室内温度为一恒定值tb,
rk表示时间点k的实时电价,nk表示优化的时段长度,tl和tu分别为室内温度的下限和上限;
2-2)求解步骤2-1)建立的优化模型:
将步骤2-1)建立的优化模型简化为式(18):
fork∈{1,2,...,nk}
如式(18)所示的模型存在解析解,如式(19)所示:
利用式(19),在每一个当前时间点计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。
技术总结