本发明涉及缺陷绝缘子的检测技术领域,具体涉及一种缺陷绝缘子的检测方法。
背景技术:
随着输电线路的不断建设以及电网技术的创新发展,基于机器人和无人机的智能电力巡检技术已经被广泛应用。电力绝缘子是对输电线路起到支撑与绝缘作用的重要电力部件,主要有陶瓷、玻璃和复合绝缘子三种类型,但其长期暴露在野外容易出现故障,一旦出现故障将会严重影响稳定的电能输送。为保障电网稳定运行,对输电线路巡检中故障绝缘子的检测尤为重要,其中绝缘子缺陷则是常见的故障类别之一。由于绝缘子常处于森林、房屋、河流和不同天气(如雨、雪、雾)等复杂场景,且出现缺陷的区域较小,所以会给绝缘子的缺陷检测带来一定的挑战。
目前绝缘子缺陷的检测方法可分为人工巡检、基于机器学习的图像识别技术和基于深度学习的目标检测算法。人工巡检主要通过人工排查绝缘子明显、直观的故障,费时费力且存在安全隐患。基于机器学习的图像识别技术如局部二值模式特征(localbinarypattern,lbp),方向梯度直方图特征(histogramoforientedgradient,hog)和deformablepartmodels(dpm)目标检测算法等虽已取得一定的效果,但其主要使用单一特征(如颜色、纹理、形状等)进行检测,同时依赖人工提取特征,工作量大,检测效率低。
随着智能电网和深度学习技术的不断发展,研究人员开始将深度学习的技术应用到电力巡检领域。对于缺陷绝缘子的检测,目前较多的方法是通过模型组合或者直接将基于深度学习的目标检测算法应用到缺陷绝缘子的检测任务。虽然现有的研究取得了一定的检测效果,但对于复杂场景下的缺陷绝缘子识别仍然存在精度偏低、检测耗时等问题,且现有研究中缺陷绝缘子数据量相对太少,阻碍故障绝缘子的进一步研究。
技术实现要素:
本发明是为了解决上述问题而进行的,目的在于提供一种缺陷绝缘子的检测方法。
本发明提供了一种缺陷绝缘子的检测方法,具有这样的特征,包括:
步骤一,采用第一技术建立缺陷绝缘子的数据库。
步骤二,采用第一算法对数据库中边界框的宽和高进行聚类,以获取缺陷绝缘子的锚点框信息。
步骤三,通过第一特征提取网络获取缺陷绝缘子的第一特征。
步骤四,使用第二算法对缺陷绝缘子进行检测,将检测尺度由3个扩展至4个,得到4尺度预测边界框,从而获取缺陷绝缘子的深层次位置信息。
步骤五,将第二算法中的4尺度预测边界框经过第三算法计算后,输出得分高的预测框,从而完成对缺陷绝缘子的检测,得到检测结果,其中检测结果包括缺陷绝缘子的锚点框信息、第一特征及缺陷绝缘子的深层次位置信息。
在本发明提供的缺陷绝缘子的检测方法中,还可以具有这样的特征:其中,步骤一中,第一技术包括数据增强技术和图像标注技术。
在本发明提供的缺陷绝缘子的检测方法中,还可以具有这样的特征:数据增强技术,是使用翻转、旋转、随机颜色及随机裁剪的方法扩充数据库。
在本发明提供的缺陷绝缘子的检测方法中,还可以具有这样的特征:图像标注技术,是通过labelimg完成标注的绝缘子图像,绝缘子图像的最终的输出格式为pascalvoc数据格式,pascalvoc数据格式由annotations,imagesets和jpegimage三个文件夹组成。
在本发明提供的缺陷绝缘子的检测方法中,还可以具有这样的特征:其中,步骤二中,第一算法是k-means 算法,步骤如下:
(1)输入:目标框样本集d={x1,x2,...,xn},锚点框聚类簇数为k。
(2)从d中随机选取一个数据点作为初始聚类中心c1。
(3)计算每个样本点x与初始聚类中心c1的最短距离d(x)。
(4)计算每个样本做为下个聚类中心的概率
(5)利用轮盘法选择下一个聚类中心c2。
(6)重复2-4,直到选出k个聚类中心c={c1,c2,...,cn}。
(7)计算样本集d中的每个x到k个聚类中心的距离,将其分至相应的簇中。
(8)更新聚类中心
(9)重复6-7,直至聚类中心不发生更改。
(10)输出k个聚类中心。
k-means 算法的距离函数公式如下:
d(box,centroid)=1-iou(box,centroid)
其中,centroid表示聚类中心,box表示样本的目标框,iou表示聚类中心框与聚类框的交并比。
在本发明提供的缺陷绝缘子的检测方法中,还可以具有这样的特征:其中,步骤三中,第一特征提取网络是se-darknet53特征提取网络。
在本发明提供的缺陷绝缘子的检测方法中,还可以具有这样的特征:se-darknet53特征提取网络,是通过在darknet53特征提取网络中引入senet注意力机制模块设计的。
在本发明提供的缺陷绝缘子的检测方法中,还可以具有这样的特征:其中,步骤四中,第二算法是yolov3算法,yolov3算法进行检测的具体步骤如下:
(1)在特征提取网络的卷积层第79层之后经过3次卷积操作得到第1个检测尺度为13×13的32倍采样特征图。
(2)将第79层的上采样结果与第61层进行特征融合,得到第2个检测尺度为26×26的16倍下采样特征图,即第91层。
(3)将第91层的上采样结果与第36层进行特征融合,得到第3个检测尺度为52×52的8倍下采样特征图,即第103层。
(4)将第103层的上采样结果与第11层进行特征融合,得到第4个检测尺度为104×104的4倍下采样特征图。
在本发明提供的缺陷绝缘子的检测方法中,还可以具有这样的特征:其中,步骤五中,第三算法是非极大值抑制算法,非极大值抑制算法的评分函数如下:
其中,首先根据得分对所有目标框b={b1,b2,...,bn}进行排序,从中选取得分最高的目标框bm放入检测集d中,并通过设定阈值nt将与bm相近检测的分数设置为零。
发明的作用与效果
根据本发明所涉及的一种缺陷绝缘子的检测方法,因为本发明在yolov3算法的基础上,使用了k-means 算法对缺陷绝缘子数据集中边界框的宽和高进行聚类,因此本发明获取初始聚类中心的随机性更小,能够获得更优的锚点框。同时,本发明的将通道注意力机制senet结构融入特征提取网络darknet53中,增加多个检测尺度提升检测精度,通过特征重标定策略学习更丰富的绝缘子缺陷特征,从而使得网络的特征提取性能更好,并使用数据增强技术扩充了缺陷绝缘子的数据库。最终本发明构建的数据库包含2448张缺陷绝缘子图像,以供系统深度学习、训练模型并满足检测需求。本发明还将yolov3算法中的3检测尺度扩展为4个,以获取更深层次的缺陷绝缘子位置信息,进而提高对缺陷绝缘子的检测精度。本发明所提检测模型能够实时有效地识别出电力绝缘子的缺陷位置,进而提高了电力巡检和缺陷绝缘子识别的智能化水。
附图说明
图1为本发明实施例中缺陷绝缘子的检测方法流程图。
图2为本发明实施例中针对不同天气环境下缺陷绝缘子的识别结果图。
图3为本发明实施例中缺陷绝缘子特征提取网络的结构示意图。
图4为本发明实施例中缺陷绝缘子检测模型的结构示意图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下实施例结合附图对本发明缺陷绝缘子的检测方法作具体阐述。
图1为本实施例中缺陷绝缘子的检测方法流程图。
如图1所示,一种缺陷绝缘子的检测方法,具体步骤如下:
s1,采用第一技术建立缺陷绝缘子的数据库,其中第一技术包括数据增强技术和图像标注技术。
数据增强技术,是使用翻转、旋转、随机颜色及随机裁剪的方法扩充数据库。其中,翻转是指将图像绕对称轴进行镜像操作,利用水平和垂直变换绝缘子图像,增加绝缘子的数据量。旋转是指图像根据特定的位置以一定的角度旋转,且在旋转过程中保持图像的原始大小。在现实环境中,不同拍摄角度的绝缘子图像存在差异,通过旋转可以获取不同角度的绝缘子图像。
图2是本实施例中针对不同天气环境下缺陷绝缘子的识别结果图。如图2所示,随机颜色是指由于电力绝缘子图像中的物体可能会由于外部光照、天气和其他因素而改变其颜色,因此本发明采用随机颜色的技术来获得更多具有不同颜色特征的绝缘子数据库。随机裁剪是指通过裁剪的方式克服因遮挡而导致的目标图片不完整的缺陷,从而扩充绝缘子数据库。
图像标注技术,是通过labelimg完成标注的绝缘子图像,绝缘子图像的最终的输出格式为pascalvoc数据格式,pascalvoc数据格式由annotations,imagesets和jpegimage三个文件夹组成。其中,annotations文件夹中保存的是xml文本,用于存储包含绝缘子和缺陷绝缘子位置坐标信息的标签数据。imagesets文件夹则是缺陷绝缘子图像的存储路径。jpegimages文件夹用于存储.jpg格式的图片。本发明构建的数据库共包含2448张缺陷绝缘子图像,以供深度学习、训练模型及满足检测需求。
s2,采用第一算法对数据库中边界框的宽和高进行聚类,以获取缺陷绝缘子的锚点框信息,其中第一算法是k-means 算法,步骤如下:
(1)输入:目标框样本集d={x1,x2,...,xn},锚点框聚类簇数为k。
(2)从d中随机选取一个数据点作为初始聚类中心c1。
(3)计算每个样本点x与初始聚类中心c1的最短距离d(x)。
(4)计算每个样本做为下个聚类中心的概率
(5)利用轮盘法选择下一个聚类中心c2。
(6)重复2-4,直到选出k个聚类中心c={c1,c2,...,cn}。
(7)计算样本集d中的每个x到k个聚类中心的距离,将其分至相应的簇中。
(8)更新聚类中心
(9)重复6-7,直至聚类中心不发生更改。
(10)输出k个聚类中心。
k-means 算法的距离函数公式如下:
d(box,centroid)=1-iou(box,centroid)
其中,centroid表示聚类中心,box表示样本的目标框,iou表示聚类中心框与聚类框的交并比。
s3,通过第一特征提取网络获取缺陷绝缘子的第一特征。其中的第一特征提取网络是se-darknet53特征提取网络。
图3为本发明实施例中缺陷绝缘子特征提取网络的结构示意图。
如图3所示,se-darknet53特征提取网络,是通过在darknet53特征提取网络中引入senet注意力机制模块设计的。
s4,使用第二算法对缺陷绝缘子进行检测,将检测尺度由3个扩展至4个,得到4尺度预测边界框,从而获取缺陷绝缘子的深层次位置信息。其中的第二算法是yolov3算法,如图3所示,具体步骤如下:
(1)在特征提取网络的卷积层第79层之后经过3次卷积操作得到第1个检测尺度为13×13的32倍采样特征图。
(2)将第79层的上采样结果与第61层进行特征融合,得到第2个检测尺度为26×26的16倍下采样特征图,即第91层。
(3)将第91层的上采样结果与第36层进行特征融合,得到第3个检测尺度为52×52的8倍下采样特征图,即第103层。
(4)将第103层的上采样结果与第11层进行特征融合,得到第4个检测尺度为104×104的4倍下采样特征图。
s5,将第二算法中的4尺度预测边界框经过第三算法计算后,输出得分高的预测框,从而完成对缺陷绝缘子的检测,得到检测结果,其中检测结果包括缺陷绝缘子的锚点框信息、第一特征及缺陷绝缘子的深层次位置信息。其中的第三算法是非极大值抑制算法,非极大值抑制算法的评分函数如下:
其中,首先根据得分对所有目标框b={b1,b2,...,bn}进行排序,从中选取得分最高的目标框bm放入检测集d中,并通过设定阈值nt将与bm相近检测的分数设置为零。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。
1.一种缺陷绝缘子的检测方法,其特征在于,包括以下步骤:
步骤一,采用第一技术建立缺陷绝缘子的数据库;
步骤二,采用第一算法对所述数据库中边界框的宽和高进行聚类,以获取所述缺陷绝缘子的锚点框信息;
步骤三,通过第一特征提取网络获取所述缺陷绝缘子的第一特征;
步骤四,使用第二算法对所述缺陷绝缘子进行检测,将检测尺度由3个扩展至4个,得到4尺度预测边界框,从而获取所述缺陷绝缘子的深层次位置信息;
步骤五,将所述第二算法中的4尺度预测边界框经过第三算法计算后,输出得分高的预测框,从而完成对缺陷绝缘子的检测,得到检测结果,其中所述检测结果包括所述缺陷绝缘子的锚点框信息、所述第一特征及所述缺陷绝缘子的深层次位置信息。
2.根据权利要求1所述的缺陷绝缘子的检测方法,其特征在于:
其中,步骤一中,所述第一技术包括数据增强技术和图像标注技术。
3.根据权利要求2所述的缺陷绝缘子的检测方法,其特征在于:
所述数据增强技术,是使用翻转、旋转、随机颜色及随机裁剪的方法扩充数据库。
4.根据权利要求2所述的缺陷绝缘子的检测方法,其特征在于:
所述图像标注技术,是通过labelimg完成标注的绝缘子图像,所述绝缘子图像的最终的输出格式为pascalvoc数据格式,所述pascalvoc数据格式由annotations,imagesets和jpegimage三个文件夹组成。
5.根据权利要求1所述的缺陷绝缘子的检测方法,其特征在于:
其中,步骤二中,所述第一算法是k-means 算法,步骤如下:
(1)输入:目标框样本集d={x1,x2,...,xn},锚点框聚类簇数为k;
(2)从d中随机选取一个数据点作为初始聚类中心c1;
(3)计算每个样本点x与初始聚类中心c1的最短距离d(x);
(4)计算每个样本做为下个聚类中心的概率
(5)利用轮盘法选择下一个聚类中心c2;
(6)重复2-4,直到选出k个聚类中心c={c1,c2,...,cn};
(7)计算样本集d中的每个x到k个聚类中心的距离,将其分至相应的簇中;
(8)更新聚类中心
(9)重复6-7,直至聚类中心不发生更改;
(10)输出k个聚类中心;
所述k-means 算法的距离函数公式如下:
d(box,centroid)=1-iou(box,centroid)
其中,centroid表示聚类中心,box表示样本的目标框,iou表示聚类中心框与聚类框的交并比。
6.根据权利要求1所述的缺陷绝缘子的检测方法,其特征在于:
其中,步骤三中,所述第一特征提取网络是se-darknet53特征提取网络。
7.根据权利要求6所述的缺陷绝缘子的检测方法,其特征在于:
所述se-darknet53特征提取网络,是通过在darknet53特征提取网络中引入senet注意力机制模块设计的。
8.根据权利要求1所述的缺陷绝缘子的检测方法,其特征在于:
其中,步骤四中,所述第二算法是yolov3算法,所述yolov3算法进行检测的具体步骤如下:
(1)在所述特征提取网络的卷积层第79层之后经过3次卷积操作得到第1个检测尺度为13×13的32倍采样特征图;
(2)将所述第79层的上采样结果与第61层进行特征融合,得到第2个检测尺度为26×26的16倍下采样特征图,即第91层;
(3)将所述第91层的上采样结果与第36层进行特征融合,得到第3个检测尺度为52×52的8倍下采样特征图,即第103层;
(4)将所述第103层的上采样结果与第11层进行特征融合,得到第4个检测尺度为104×104的4倍下采样特征图。
9.根据权利要求1所述的缺陷绝缘子的检测方法,其特征在于:
其中,步骤五中,所述第三算法是非极大值抑制算法,所述非极大值抑制算法的评分函数如下
其中,首先根据得分对所有目标框b={b1,b2,...,bn}进行排序,从中选取得分最高的目标框bm放入检测集d中,并通过设定阈值nt将与bm相近检测的分数设置为零。
技术总结