本发明属于航天技术领域,涉及针对geo目标的天基光学测角弧段初定轨及关联方法。
背景技术:
geo(geostationaryorbit,地球静止轨道)目标天基光学测量弧段识别工程中所面临的问题就是每天数以百计超短弧段的测量资料不能有效利用,造成资源的浪费。这些资料充分利用可以直接增加空间目标编目数量,提高我国空间目标编目预警水平。天基光学geo目标定轨的主要难题是其测量弧段较短,一般小于3分钟。弧段越短,传统拉普拉斯方法、高斯方法定轨病态性越突出,尤其是初始轨道确定中半长轴精度越低,因此基于轨道特性的多个超短弧段的关联正确率低。解决这一问题一个有效途径相对高精度的初始轨道确定方法及基于轨道特性的geo目标多个超短弧段高正确率关联方法。多个弧段的高正确率的相互关联可以实现弧段的延长拓展,长弧段观测数据为精密轨道确定提供数据支持。因此亟需一种针对geo目标的天基光学测角弧段高效率的关联及高精度的初始轨道确定方法。
技术实现要素:
本发明的目的在于克服现有技术缺陷,为了解决针对geo目标的天基光学测角超短弧段初始轨道确定及弧段关联问题,提出一种基于改进细菌觅食算法的初始轨道确定方法和基于方位特性(星下点经纬度)geo目标弧段关联方法。
一种针对geo目标的天基光学测角弧段初定轨及关联方法,所述方法包括:
步骤1)对天基平台测量弧段进行筛选,并对天基平台的高度和经纬度数据进行坐标系转换,得到j2000坐标系下的位置矢量和速度矢量;
步骤2)从筛选的测量弧段中选取两个针对geo目标的天基平台测量弧段,对两个弧段内的赤经赤纬数据分别进行采样;
步骤3)对每一个弧段,根据采样点的赤经赤纬数据,确定天基平台到geo目标的距离范围生成斜距的搜索网格点,在搜索网格点内,采用细菌觅食算法联合遗传算法,确定每个采样点对应的初始轨道,得到对应的星下点轨迹,进而得到每个弧段的经度平均值;
步骤4)计算两个弧段的经度平均值的差值,当差值小于预设的阈值时,则两弧段关联。
作为上述方法的一种改进,所述步骤1)具体包括:
对天基平台的测量弧段进行筛选,当测量弧段中测量数据的赤纬数据最大值大于阈值时,弃用该弧段;否则,保留该弧段;
将地固坐标系下天基平台的高度和经纬度数据转化为j2000坐标系下的位置数据和速度数据。
作为上述方法的一种改进,所述步骤2)具体包括:
选取两个长度达到预设时间并且针对geo目标的天基平台测量弧段,设置采样点间隔进行采样;
针对每个弧段,分别选取第i个采样点的赤经数据αi和赤纬数据δi;
根据下式生成第i个采样点对应的geo目标相对测量平台的视线单位矢量
其中,n为该弧段内的采样点个数。
作为上述方法的一种改进,所述步骤3)对每一个弧段具体包括以下步骤:
步骤301)将采样点的赤经赤纬数据转换为方向矢量;
步骤302)估计天基平台到geo目标的距离范围并作为优化变量,依据限制条件生成斜距的搜索网格点;
步骤303)根据摄动模型对轨道向测角采样点进行预报,依据预报的位置矢量及天基平台位置矢量,计算geo目标相对测量平台的位置,生成预报数据;并计算弧段内每个采样点的测量数据与预报数据的均方差;
步骤304)在搜索网格点内,采用细菌觅食算法联合遗传算法,以均方差为适应度值进行轨道搜索优化,得到geo目标的位置矢量和速度矢量,从而确定初始轨道;
步骤305)根据geo目标的位置矢量,转化计算得到该采样点对应的星下点轨迹的经纬度;
步骤306)当该弧段还有未计算的采样点时,转至步骤301)得到该弧段下一个采样点的星下点轨迹的经纬度;否则,转至步骤307);
步骤307)对该弧段所有采样点的经度求和计算该弧段的经度平均值。
作为上述方法的一种改进,所述步骤302)具体包括:
确定geo目标到天基测量平台的距离ρi和ρj,ρi和ρj取值均在38000至44000公里区间,并且|ρi-ρj|≤1000公里;i和j为该弧段内的两个采样点;
根据ρi和ρj的取值区间及两者之间的差值假设弧段内一系列测量点时刻的天基平台到geo目标的距离集合满足下式:
{(ρi,ρj)|38000<ρi<44000,38000<ρj<44000,|ρi-ρj|<1000}
依据每对组合中的ρi和ρj,根据下式计算:
其中,ri和rj分别为采样点i和j关于geo目标在j2000坐标系下的位置矢量,rsite_mi和rsite_mj分别为采样点i和j关于天基平台在j2000坐标系下位置矢量,
作为上述方法的一种改进,所述步骤303)具体包括:
采用lambert方法计算采样点i和j的速度矢量vi及vj,
根据摄动模型对轨道向第k个测角采样点的赤经αmk和赤纬δmk进行预报,得到在j2000坐标系下预报的位置矢量rek和速度矢量vek;
依据预报的位置矢量rek及平台位置矢量rsite_mk计算geo目标相对天基平台的位置rrel_ek,生成预报的赤经αek和赤纬δek;
根据下式得到该弧段内的均方差j为:
作为上述方法的一种改进,所述步骤304)具体包括:
采用细菌觅食法对集合{ρi,ρj}进行趋化操作,选取均方差j为适应度值:
通过细菌觅食联合遗传算法的优化过程得到使适应度函数最小的距离量,计算得到geo目标的位置矢量ri和速度矢量vi,从而确定初始轨道。
与现有技术相比,本发明的优势在于:
1、对比已有技术,本发明提出了把geo目标的短弧段初始轨道确定问题转化为参数优化问题,通过改进细菌觅食算法,提高了细菌觅食算法的全局搜索能力并应用于geo目标短弧段初始轨道确定,提高了geo目标初始轨道确定精度,尤其是半长轴精度;
2、本发明的方法把初始定轨的轨道转化为星下点轨迹中的经纬度来进行弧段之间的关联,对大部分非8字形星下点轨迹geo目标能够提高目标关联成功率;
3、本发明的方法具有提高geo目标天基测角数据轨道确定精度,提升关联成功率的效果。
附图说明
图1是本发明实施例1提供的针对geo目标的天基光学测角弧段初定轨及关联方法流程图;
图2是仿真实例低轨道太阳同步轨道卫星平台对geo测量弧段分布图;
图3是仿真实例低轨道太阳同步轨道卫星平台对geo测量数据定轨后计算的5天的经度分布图;
图4是仿真实例计算的不同时间间隔对应的关联成功率。
具体实施方式
本发明的基本实施过程如下:
步骤一、天基平台测量数据处理,坐标系转换,筛选geo目标赤经赤纬数据。
步骤二、赤经赤纬角数据转化为方向矢量。
步骤三、把弧段内测量点中天基平台到geo目标的距离,ρi和ρj作为优化变量,依据限制条件,生成斜距的搜索网格点。
步骤四、根据两点解算轨道根数,预报统计测量数据均方差。
步骤五、采用细菌觅食算法联合遗传算法进行轨道搜索优化,确定初始轨道。
步骤六、把geo目标的位置矢量ri转化计算,得到星下点轨迹的经纬度参数(latiloni)。
步骤七、判断是否返回第二步骤,重复以上步骤计算第i 1点的星下点轨迹经纬度参数(lati 1loni 1)
步骤八、n个点的经度求平均值,
步骤九、设定经度阈值弧段之间关联,当经度误差小于0.015度判定两弧段是否关联。
下面结合附图和实施例对本发明的技术方案进行详细的说明。
实施例1
如图1所示,本发明的实施例1提出了一种针对geo目标的天基光学测角弧段初定轨及关联的方法,其具体步骤包括:
步骤一、天基平台测量数据处理,坐标系转换,筛选geo目标赤经赤纬数据。在本实施方式中,步骤一可以包括如下步骤s11~s13,具体的:
s11:对天基平台测量弧段进行筛选,如果某测量弧段中测量值的赤纬数据最大值δmax大于15°,弃用该弧段。
s12:把地固坐标系下天基测量平台的高度,经纬度数据转化为j2000坐标系下的位置、速度数据rsite_mi和vsite_mi。
步骤二、赤经赤纬角数据转化为方向矢量。在本实施方式中,步骤二可以包括如下步骤s21~s23,具体的:
s21:选取两段针对geo目标天基平台测量弧段,测量弧段长度约为1至3分钟,采样点间隔3秒。
s22:每个采样点对应一对赤经、赤纬数据,选取弧段的第ti时刻的赤经赤纬测量数据(αi,δi)。
s23:针对每个弧段,生成测量时间点geo目标相对测量平台的视线单位矢量:
其中n为弧段内数据点个数,αti和δti分别为第i个采样点的赤经、赤纬数据。
步骤三、把弧段内测量点中天基平台到geo目标的距离ρi和ρj作为优化变量,依据限制条件生成斜距的搜索网格点。
在本实施方式中,步骤三可以包括如下步骤s31~s34,具体的:
s31:天基平台选取的是低轨道太阳同步近圆轨道。
s32:估计geo目标到天基测量平台的距离ρi和ρj,ρi和ρj取值在38000至44000公里区间,|ρi-ρj|≤1000公里。
s33:根据ρi和ρj的取值区间及两者之间的差值假设一系列弧段内测量点时刻的天基平台到geo目标的距离集合
{(ρi,ρj)|38000<ρi<44000,38000<ρj<44000,|ρi-ρj|<1000}
s34:依据每对组合中ρi和ρj计算两点对应时刻的位置矢量
其中,ri和rj分别为采样点i和j关于geo目标在j2000坐标系下的位置矢量,rsite_mi和rsite_mj分别为采样点i和j关于天基平台在j2000坐标系下位置矢量,
步骤四、根据两点解算轨道根数,预报统计测量数据均方差。
在本实施方式中,步骤四可以包括如下步骤s41~s43,具体的:
s41:采用lambert方法计算所选取两点的速度矢量vi及vj,
s42:求得弧段点的位置、速度矢量后,根据摄动模型对轨道向测角采样点(αmk,δmk)进行预报,得到在j2000坐标系下表示测量采样点的位置矢量rek和速度矢量vek。
s43:依据预报的位置矢量rek及平台位置矢量rsite_mk计算目标相对测量平台的位置rrel_ek,生成预报的赤经、赤纬测角数据(αek,δek)。
计算n-1个点的测量赤经、赤纬与预报赤经、赤纬的均方差:
步骤五、采用细菌觅食算法联合遗传算法进行轨道搜索优化,确定初始轨道。在本实施方式中,步骤四可以包括如下步骤s51~s56,具体的:
s51:采用细菌觅食法对集合{ρi,ρj}进行趋化操作。趋化性操作中,细菌随机选择一个方向游动,细菌每游动一次计算一次细菌个体适应度值。适应度值选取为:
s52:在小于限定游动步数情况下,新位置的适应度如果更好,则将新位置的适应度值存储更新。
新位置的适应度变差,或达到游动限定步长,则需结束本次游动,细菌游动方向发生翻转,向另外一个方向游动。
s53:寻找局部最优解,设p(i,n)为细菌个体位置,n表示第n次趋化性操作。细菌在约束区域的移动方程为:
p(i,n 1)=p(i,n) c(i)φ(i,n)
其中
s54:在细菌游动、翻转过程中,细菌个体会根据与其他细菌之间的相互作用判断是否偏离最佳适应度区域,避免发生离散,保持细菌的聚集特性。具体体现在细菌之间的引力和斥力。细菌个体与其他细菌之间的相互作用通过以下公式来表示:
s指细菌个数,m表示细菌个体的维度,
s55:对当前的细菌样本进行编码、交叉、变异及解码,筛选出新细菌样本。不同于传统细菌觅食法的复制及迁移操作,其把遗传算法引入到传统细菌觅食复制及迁移操作中,增加了细菌觅食法的全局搜索能力。
s56:通过细菌觅食联合遗传算法的优化过程得到使适应度函数最小的距离量,计算位置矢量ri、速度矢量vi。
步骤六、把geo目标的位置矢量ri转化计算,得到星下点轨迹的经纬度参数(latiloni)。
步骤七、判断是否返回第二步骤,重复以上步骤计算第i 1点的星下点轨迹经纬度参数(lati 1loni 1)
步骤八、n个点的经度求平均值,
步骤九、设定经度和纬度阈值弧段之间关联,当经度误差小于0.015度时,判定两弧段关联。
下面给出一个具体的仿真实例来说明本方法,仿真的卫星平台位于约500公里轨道高度太阳同步轨道的晨昏轨道上,光学探测设备指向卫星的背阳面,即卫星本体坐标系的y轴,指向geo轨道带。卫星平台的轨道长周期项为:半长轴a=6871.902km,轨道偏心率e=0.0014714,轨道倾角i=97.428°。光学测量设备的测角精度为3角秒。模拟产生了5天的光学测量数据,如图2所示,图中显示的是模拟弧段的分布情况,由于光学设备也可能探测到一些大椭圆及低轨道卫星,这些弧段特点是弧段短。整体弧段分布集中在小于150秒。
采用本发明的方法进行轨道确定并转化为星下点经纬度信息,如图3所示,图中显示了采用本方法计算探测目标的不同时间的星下点经度信息。可以看出经度信息随时间分布基本是线性的,这为我们下一步的关联奠定了非常好的基础。
如图4所示,我们对不同时间间隔的测量弧段进行关联,从关联结果可以看出,初步关联成功率大于85%。由于错误关联结果中大部分是多个弧段关联了一个目标,如果对这种情况作进一步筛选,其关联成功率可以达到90%以上。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
1.一种针对geo目标的天基光学测角弧段初定轨及关联方法,所述方法包括:
步骤1)对天基平台测量弧段进行筛选,并对天基平台的高度和经纬度数据进行坐标系转换,得到j2000坐标系下的位置矢量和速度矢量;
步骤2)从筛选的测量弧段中选取两个针对geo目标的天基平台测量弧段,对两个弧段内的赤经赤纬数据分别进行采样;
步骤3)对每一个弧段,根据采样点的赤经赤纬数据,确定天基平台到geo目标的距离范围生成斜距的搜索网格点,在搜索网格点内,采用细菌觅食算法联合遗传算法,确定每个采样点对应的初始轨道,得到对应的星下点轨迹,进而得到每个弧段的经度平均值;
步骤4)计算两个弧段的经度平均值的差值,当差值小于预设的阈值时,则两弧段关联。
2.根据权利要求1所述的针对geo目标的天基光学测角弧段初定轨及关联方法,其特征在于,所述步骤1)具体包括:
对天基平台的测量弧段进行筛选,当测量弧段中测量数据的赤纬数据最大值大于阈值时,弃用该弧段;否则,保留该弧段;
将地固坐标系下天基平台的高度和经纬度数据转化为j2000坐标系下的位置矢量和速度矢量。
3.根据权利要求2所述的针对geo目标的天基光学测角弧段初定轨及关联方法,其特征在于,所述步骤2)具体包括:
选取两个长度达到预设时间并且针对geo目标的天基平台测量弧段,设置采样点间隔进行采样;
针对每个弧段,分别选取第i个采样点的赤经数据αi和赤纬数据δi;
根据下式生成第i个采样点对应的geo目标相对测量平台的视线单位矢量
其中,n为该弧段内的采样点个数。
4.根据权利要求3所述的针对geo目标的天基光学测角弧段初定轨及关联方法,其特征在于,所述步骤3)对每一个弧段具体包括以下步骤:
步骤301)将采样点的赤经赤纬数据转换为方向矢量;
步骤302)估计天基平台到geo目标的距离范围并作为优化变量,依据限制条件生成斜距的搜索网格点;
步骤303)根据摄动模型对轨道向测角采样点进行预报,依据预报的位置矢量及天基平台位置矢量,计算geo目标相对测量平台的位置,生成预报数据;并计算弧段内每个采样点的测量数据与预报数据的均方差;
步骤304)在搜索网格点内,采用细菌觅食算法联合遗传算法,以均方差为适应度值进行轨道搜索优化,得到geo目标的位置矢量和速度矢量,从而确定初始轨道;
步骤305)根据geo目标的位置矢量,转化计算得到该采样点对应的星下点轨迹的经纬度;
步骤306)当该弧段还有未计算的采样点时,转至步骤301)得到该弧段下一个采样点的星下点轨迹的经纬度;否则,转至步骤307);
步骤307)对该弧段所有采样点的经度求和计算该弧段的经度平均值。
5.根据权利要求4所述的针对geo目标的天基光学测角弧段初定轨及关联方法,其特征在于,所述步骤302)具体包括:
确定geo目标到天基测量平台的距离ρi和ρj,ρi和ρj取值均在38000至44000公里区间,并且|ρi-ρj|≤1000公里;i和j为该弧段内的两个采样点;
根据ρi和ρj的取值区间及两者之间的差值假设弧段内一系列测量点时刻的天基平台到geo目标的距离集合满足下式:
{(ρi,ρj)|38000<ρi<44000,38000<ρj<44000,|ρi-ρj|<1000}
依据每对组合中的ρi和ρj,根据下式计算:
其中,ri和rj分别为采样点i和j关于geo目标在j2000坐标系下的位置矢量,rsite_mi和rsite_mj分别为采样点i和j关于天基平台在j2000坐标系下位置矢量,
6.根据权利要求5所述的针对geo目标的天基光学测角弧段初定轨及关联方法,其特征在于,所述步骤303)具体包括:
采用lambert方法计算采样点i和j的速度矢量vi及vj,
根据摄动模型对轨道向第k个测角采样点的赤经αmk和赤纬δmk进行预报,得到在j2000坐标系下预报的位置矢量rek和速度矢量vek;
依据预报的位置矢量rek及平台位置矢量rsite_mk计算geo目标相对天基平台的位置rrel_ek,生成预报的赤经αek和赤纬δek;
根据下式得到该弧段内的均方差j为:
7.根据权利要求6所述的针对geo目标的天基光学测角弧段初定轨及关联方法,其特征在于,所述步骤304)具体包括:
采用细菌觅食法对集合{ρi,ρj}进行趋化操作,选取均方差j为适应度值:
通过细菌觅食联合遗传算法的优化过程得到使适应度函数最小的距离量,计算得到geo目标的位置矢量ri和速度矢量vi,从而确定初始轨道。
技术总结