一种高原地区双车道公路弯坡组合段线形指标选取方法与流程

专利2022-05-09  121


本发明涉及一种高原地区双车道公路弯坡组合段线形指标选取方法,属于道路几何线形设计
技术领域

背景技术
:高原地区地形地势复杂,气候条件恶劣,交通事故多发且严重,道路安全形势严峻。高原低压缺氧环境下驾驶员的生理与心理状况与平原地区存在较大差异,导致驾驶员的心生理负荷高于平原地区,影响驾驶安全,因此高原公路的弯坡组合段的线形组合设计有必要考虑低压低氧环境对驾驶员的影响。当前高原地区公路以低等级双车道公路为主,受复杂地形条件和工程经济条件影响,高原双车道公路依山傍谷、沿溪临崖路段较多,导致高原双车道公路低线形指标路段出现频率较高,而线性指标较低的弯坡组合路段往往是交通事故易发路段。由于高原低压低氧环境对驾驶员的心生理状况存在一定影响,高原双车道公路低指标弯坡组合路段的线形设计安全面临更高挑战。道路安全手册(hsm)指出,驾驶员失误是交通运输中大部分事故的显著影响因素。有学者对高原地区986起事故进行特征分析,发现和机动车驾驶员相关的因素在高原地区交通事故成因中占93.1%,驾驶员因素是高原道路交通安全事故的主导因素。因此,高原双车道公路的线形设计有必要考虑高原低压低氧环境对驾驶员因素的影响。根据中国的路线设计规范,海拔3000m以上高原公路的纵坡必须根据海拔高度进行折减,但是针对弯坡组合段的线形组合值却并没有根据海拔进行折减的相关规定。因此,考虑高原环境对驾驶员心生理特性的影响,有必要从驾驶员心生理特性的角度开展高原双车道公路弯坡组合值的安全研究,这对高原地区的道路线形设计具有重要参考价值。技术实现要素:本发明所要解决的技术问题是:提供一种高原地区双车道公路弯坡组合段线形指标选取方法,该方法全方面考虑高原低压缺氧环境的驾驶员反应特性下的弯坡组合段线形取值,优化现有道路几何线形设计方法。本发明为解决上述技术问题采用以下技术方案:一种高原地区双车道公路弯坡组合段线形指标选取方法,包括以下步骤:步骤1,将高原海拔范围划分为(3000m,3500m)、(3500m,4000m)、(4000m,4500m)、(4500m,5000m)四个海拔区间,针对每个海拔区间,采集驾驶员在高原地区双车道公路上行驶时的信息,包括驾驶员在不同海拔高度及对应的弯坡组合段的车速、脑电信号和心率;所述脑电信号包括脑电信号β信号波及其比率值β/θ、β/(θ α),其中,θ表示θ波,α表示α波;步骤2,针对每个海拔区间,分别对驾驶员的脑电信号β信号波、比率值β/θ、比率值β/(θ α)和心率hr进行样本熵处理,得到心率样本熵saen(hr)和脑电样本熵saen(β)、saen(β/θ)、saen(β/(θ α));步骤3,针对每个海拔区间,对saen(hr)、saen(β)、saen(β/θ)和saen(β/(θ α))进行主成分分析,得到驾驶员生心理负荷综合评价指标cise;步骤4,构建不同海拔区间内驾驶员生心理负荷综合评价指标cise与弯坡组合段的线形组合值ca之间的回归模型;步骤5,确定不同海拔区间对应的回归模型的回归曲线突变点,将回归曲线突变点对应的线形组合阈值cacri作为弯坡组合段的线形设计指标。作为本发明的一种优选方案,步骤1所述采集驾驶员在高原地区双车道公路上行驶时的信息,具体为:在高原地区选取某双车道公路进行现场驾驶实验,将生物反馈仪佩戴于驾驶员身上,采集脑电信号和心率,并借助安装于车辆上的gps信号机记录驾驶过程中的位置和车速。作为本发明的一种优选方案,步骤1所述弯坡组合段的划分原则为圆曲线半径r≤600m且纵坡i≥3%。作为本发明的一种优选方案,步骤2所述样本熵处理的具体算法如下:样本熵用sampen(m,r,n)表示,其中,嵌入维数m取2,相似容限r取0.2sd,sd为标准差,数据长度n取256;①将长度为n的数据序列x(1),x(2),…,x(n)按顺序组成m维矢量:xm(i)=[x(i),x(i 1),…,x(i m-1)]其中,1≤i≤n-m 1,x(i)、x(i 1)、x(i m-1)分别表示数据序列第i、i 1、i m-1个数据;②定义矢量xm(i)与矢量xm(j)之间的距离d[xm(i),xm(j)]为两者对应元素差值的绝对值中的最大值,即:d[xm(i),xm(j)]=max{|x(i k)-x(j k)|}其中,0≤k≤m-1,1≤i,j≤n-m 1,i≠j;③对于一个给定的矢量xm(i),统计出d[xm(i),xm(j)]<r的数目与其余矢量总数n-m的比值,记作其中,1≤j≤n-m 1,i≠j,对所有的求平均值bm(r):增加维数到m 1,即m′=m 1,同样有比值其中,1≤j≤n-m′ 1,i≠j,对所有的求平均值bm′(r):④该数据序列的样本熵为:作为本发明的一种优选方案,所述步骤3的具体过程如下:针对每个海拔区间,对步骤2得到的样本熵saen(hr)、saen(β)、saen(β/θ)和saen(β/(θ α))进行主成分分析,选取累计贡献率超过85%的前k个主成分确定各样本熵的权重系数,以主成分的方差贡献率为权重对权重系数加权平均归一化,得到驾驶员生心理负荷综合评价指标cise:其中,a、b、c、d均为加权平均归一化后的权重系数。作为本发明的一种优选方案,步骤4所述回归模型形式如下:cise=eca-f其中,e、f均为回归系数,e>0,f>0,cise为生心理负荷综合评价指标,ca为弯坡组合段的线形组合值,r为圆曲线半径,i为纵坡。作为本发明的一种优选方案,所述步骤5中在进行弯坡组合段的线形设计时,控制弯坡组合段的线形组合值ca大于cacri,以保证驾驶员在高原地区双车道公路弯坡组合段行车时的心生理负荷处于安全状态。本发明采用以上技术方案与现有技术相比,具有以下技术效果:本发明在现有技术的基础上解决了现有道路几何线形设计中的弯坡组合路段线形指标未考虑高原地区低压缺氧环境对驾驶员特性不利影响的不足,同时,本发明公开的方法简单、方便,提出了针对双车道公路弯坡组合段的线形指标选取方法,为高原地区道路安全设计提供参考。附图说明图1是本发明一种高原地区双车道公路弯坡组合段线形指标选取方法的流程图。图2是不同海拔区间cise随弯坡组合值ca的变化趋势。具体实施方式下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。如图1所示,为本发明提出的一种高原地区双车道公路弯坡组合段线形指标选取方法的流程图,包括以下步骤:(1)将高原海拔范围(3000m~5000m)划分为(3000m,3500m)、(3500m,4000m)、(4000m,4500m)、(4500m,5000m)四个海拔区间;针对每个海拔区间,采集驾驶员在高原地区不同海拔高度、不同弯坡组合段的车速、心率和脑电数据;采集驾驶员的车速、心率和脑电数据,是在高原地区选取典型双车道公路进行现场驾驶实验,将生物反馈仪佩戴于驾驶员身上,采集心率、脑电数据,借助gps信号机记录驾驶过程中的位置信息和速度数据。(2)对驾驶员的脑电信号和心率进行样本熵处理,提取脑电和心率指标的特征指标;脑电信号是指脑电信号β信号波及其比率值β/θ、β/(θ α);心率是指人体心脏每分钟的跳动次数,单位为次每分钟(bpm);样本熵算法可以用sampen(m,r,n)表示,其中m为嵌入维数,r为相似容限,n为数据长度。样本熵的具体算法可表示如下:①将序列x(1),x(2),…,x(n)按顺序组成m维矢量,xm(i)=[x(i),x(i 1),…,x(i m-1)]其中:1≤i≤n-m 1。②定义矢量xm(i)与矢量xm(j)之间的距离d[xm(i),xm(j)]为两者对应元素中的最大值,即d[xm(i),xm(j)]=max{|x(i k)-x(j k)|}其中:0≤k≤m-1;1≤i,j≤n-m 1,i≠j。③给定相似容限r(r>0),对于一个给定的矢量xm(i)(1≤i≤n-m 1),统计出d[xm(i),xm(j)]<r的数目与其余矢量总数n-m的比值,记作其中:1≤j≤n-m 1,i≠j。对所有的求平均值增加维数到m 1,即m′=m 1,同样有其中:1≤j≤n-m′ 1,i≠j。对所有的求平均值④此序列的样本熵为但在实际计算过程中n不可能为∞,当n取有限值时本发明采用样本熵对脑电信号β波及其比率值β/θ、β/(θ α)和心率hr进行处理,其中嵌入维数m取2,相似容限r取0.2sd(sd是原始数据的标准差),数据长度n取256(1s的样本数据),分别得到心率样本熵saen(hr)和脑电样本熵saen(β)、saen(β/θ)、saen(β/(θ α))。(3)对心率样本熵和脑电信号样本熵进行主成分分析,得到驾驶员生心理负荷综合评价指标cise;对步骤2所得的心率和脑电样本熵指标进行主成分分析,选取累计贡献率达到85%的前k个主成分确定综合指标中各样本熵的权重系数,以主成分的方差贡献率为权重对系数加权平均归一化,得到心生理负荷综合评价指标cise:式中:a、b、c、d均为加权平均归一化后的权重系数。。(4)构建综合评价指标cise与不同海拔区间内弯坡组合段的线形组合值ca的回归模型;弯坡组合段的线形组合值ca(combinedalignment),其表达式如下所示:式中:ca为弯坡组合段线形组合值;r为圆曲线半径,单位m;i为道路纵坡,单位%。综合评价指标cise的回归模型是关于线形组合值ca的单调递减的负幂函数曲线,回归形式如下:cise=eca-f式中:e、f均为回归系数(>0)。(5)确定不同海拔高度区间内的cise回归曲线突变点对应的线形组合阈值cacri,作为弯坡组合路段的线形设计指标;线性组合阈值cacri是利用拉格朗日中值定理分别计算各个海拔区间内的突变点,作为满足驾驶员心生理负荷安全的线形组合值临界点,在进行弯坡组合段的线形设计时宜控制线形组合值ca大于cacri,以保证驾驶员在高原双车道公路弯坡组合段行车时的心生理负荷处于安全状态。实施例选取高原地区典型的双车道公路——国道318林芝市-色季拉山口段进行现场驾驶实验,实验路段为双向两车道,车道宽3.5m,设计速度40km/h,路线全长约50km,所选路段的起点高程为2979m,终点高程4720m。实验人员选取初次进入高原地区(高原习服期≤10d)的10名年轻驾驶员作为实验样本进行实验,其中男性7名,女性3名,平均年龄25.4岁,平均驾龄4.7年。弯坡组合路段的线形指标计算方法主要包括以下步骤:步骤(1):将高原海拔范围(3000m~5000m)划分为(3000m,3500m)、(3500m,4000m)、(4000m,4500m)、(4500m,5000m)四个海拔区间,针对每个海拔区间,采集驾驶员在高原地区不同海拔高度、不同弯坡组合段的车速、心率和脑电数据;实验模型道路线形结构以弯坡组合段为主,实验道路的线形设计数据如表1所示。表1弯坡组合段线形组合分布情况曲线组合段个数圆曲线半径变化范围(m)竖曲线纵坡变化范围(%)4960-6003-6借助加拿大thoughttechnology公司生产的八通道多参数生物反馈仪采集实验人员的心率和脑电数据,采集频率为256hz,借助gps信号机记录驾驶过程中的位置信息和速度数据。步骤(2):对驾驶员的脑电信号和心率进行样本熵处理,提取脑电和心率指标的特征指标,即脑电和心率样本熵;采用样本熵算法对被试人员滤波降噪处理后的脑电信号β波及其比率值β/θ、β/(θ α)和心率hr进行处理,其中嵌入维数m取2,相似容限r取0.2sd,数据长度n取256(1s的样本数据),分别得到心率样本熵saen(hr)和脑电样本熵saen(β)、saen(β/θ)、saen(β/(θ α)),统计量描述如表2所示。表2描述统计量均值标准差分析nsaen(β)1.132404.2022311030saen(β/θ)1.13638.2336241030saen(β/(θ α))1.20570.2076401030saen(hr).34307.1135391030步骤(3):对心率样本熵和脑电信号样本熵进行主成分分析,得到驾驶员生心理负荷综合评价指标cise;对步骤2所得的心率和脑电样本熵指标进行主成分分析,具体过程如下:式中:xi(i=1,2…,p)表示需要进行主成分分析的原有变量,p=4;yj(j=1,2…,k)为原有变量的第j个主成分;aij称为因子载荷,可以由下式求出:式中:λi为原有变量的相关系数矩阵的第i个特征值;uij为第i个特征向量的第j分量。主成分的个数由累计贡献率确定:式中:ck表示前k个主成分的累计贡献率,ck应达到85%以上。得到的主成分分析结果如表3~表5所示。表3解释的总方差表4成份矩阵表5成份得分系数矩阵根据主成分分析结果,第一主成分的特征根为1.998,它解释了总变异的49.948%,第二主成分的特征根为1.405,解释了总变异的35.218%。前两个主成分的特征根均大于1,累计贡献率达到了85.166%,因此本文选取第一主成分和第二主成分确定综合指标中各样本熵的权重系数,两个主成分的线性组合为:z1=0.355*saen(β) 0.426*saen(β/θ) 0.438*saen(β/(θ α)) 0.037*saen(hr)z2=-0.168*saen(β) 0.069*saen(β/θ)-0.144*saen(β/(θ α)) 0.979*saen(hr)以主成分的方差贡献率为权重,对该指标在各主成分线性组合中的系数的加权平均的归一化,可以求得心生理负荷综合熵指标cise的表达式如下:cise=0.127*saen(β) 0.254*saen(β/θ) 0.229*saen(β/(θ α)) 0.390*saen(hr)步骤(4):构建综合评价指标cise与不同海拔区间内弯坡组合段的线形组合值ca的回归模型;分析弯坡组合段驾驶员的心生理负荷综合样本熵cise与弯坡组合值ca的关系,作不同海拔区间内弯坡组合段cise随弯坡组合值ca的变化趋势散点图,如图2所示。由图2可看出,综合评价指标cise的回归模型是关于线形组合值ca的单调递减的负幂函数曲线,借助spss对不同海拔区间内综合样本熵cise与组合线形值ca的变化趋势进行回归,得到不同海拔区间内综合样本熵cise与组合线形值ca的回归模型:(1)h=3000~3500mcise=4.686ca-0.422对模型进行显著性检验,模型判定系数r2=0.928,显著性水平sig=0.000<0.001。(2)h=3500~4000mcise=3.635ca-0.315对模型进行显著性检验,模型判定系数r2=0.880,显著性水平sig=0.000<0.001。(3)h=4000~4500mcise=3.621ca-0.300对模型进行显著性检验,模型判定系数r2=0.848,显著性水平sig=0.000<0.001。(4)h=4500~5000mcise=3.178ca-0.270对模型进行显著性检验,模型判定系数r2=0.888,显著性水平sig=0.000<0.001。步骤(5):确定不同海拔高度区间内的cise回归曲线突变点对应的线形组合阈值cacri,作为弯坡组合路段的线形设计指标;线性组合阈值cacri是利用拉格朗日中值定理分别计算各个海拔区间内的突变点,作为满足驾驶员心生理负荷安全的线形组合值临界点,计算结果如表6所示。表6基于cise的不同海拔区间内ca临界值海拔区间(m)线形组合值ca临界值3000~350054.63500~400056.74000~450057.04500~500057.6当ca小于cacri时,cise随ca减小而急剧增加;当ca大于cacri时,cise随ca增加而缓慢减少。cacri对应的cise是曲线变化的突变点,对应驾驶员在不同海拔区间内弯坡组合路段的心生理负荷综合样本熵cise变化的分界点,因此可将回归曲线突变点cacri作为满足驾驶员心生理负荷安全的线形组合值临界点,在进行弯坡组合段的线形设计时宜控制线形组合值ca大于cacri,以保证驾驶员在高原双车道公路弯坡组合段行车时的心生理负荷处于安全状态。以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。当前第1页1 2 3 
技术特征:

1.一种高原地区双车道公路弯坡组合段线形指标选取方法,其特征在于,包括以下步骤:

步骤1,将高原海拔范围划分为(3000m,3500m)、(3500m,4000m)、(4000m,4500m)、(4500m,5000m)四个海拔区间,针对每个海拔区间,采集驾驶员在高原地区双车道公路上行驶时的信息,包括驾驶员在不同海拔高度及对应的弯坡组合段的车速、脑电信号和心率;所述脑电信号包括脑电信号β信号波及其比率值β/θ、β/(θ α),其中,θ表示θ波,α表示α波;

步骤2,针对每个海拔区间,分别对驾驶员的脑电信号β信号波、比率值β/θ、比率值β/(θ α)和心率hr进行样本熵处理,得到心率样本熵saen(hr)和脑电样本熵saen(β)、saen(β/θ)、saen(β/(θ α));

步骤3,针对每个海拔区间,对saen(hr)、saen(β)、saen(β/θ)和saen(β/(θ α))进行主成分分析,得到驾驶员生心理负荷综合评价指标cise;

步骤4,构建不同海拔区间内驾驶员生心理负荷综合评价指标cise与弯坡组合段的线形组合值ca之间的回归模型;

步骤5,确定不同海拔区间对应的回归模型的回归曲线突变点,将回归曲线突变点对应的线形组合阈值cacri作为弯坡组合段的线形设计指标。

2.根据权利要求1所述高原地区双车道公路弯坡组合段线形指标选取方法,其特征在于,步骤1所述采集驾驶员在高原地区双车道公路上行驶时的信息,具体为:在高原地区选取某双车道公路进行现场驾驶实验,将生物反馈仪佩戴于驾驶员身上,采集脑电信号和心率,并借助安装于车辆上的gps信号机记录驾驶过程中的位置和车速。

3.根据权利要求1所述高原地区双车道公路弯坡组合段线形指标选取方法,其特征在于,步骤1所述弯坡组合段的划分原则为圆曲线半径r≤600m且纵坡i≥3%。

4.根据权利要求1所述高原地区双车道公路弯坡组合段线形指标选取方法,其特征在于,步骤2所述样本熵处理的具体算法如下:

样本熵用sampen(m,r,n)表示,其中,嵌入维数m取2,相似容限r取0.2sd,sd为标准差,数据长度n取256;

①将长度为n的数据序列x(1),x(2),…,x(n)按顺序组成m维矢量:

xm(i)=[x(i),x(i 1),…,x(i m-1)]

其中,1≤i≤n-m 1,x(i)、x(i 1)、x(i m-1)分别表示数据序列第i、i 1、i m-1个数据;

②定义矢量xm(i)与矢量xm(j)之间的距离d[xm(i),xm(j)]为两者对应元素差值的绝对值中的最大值,即:

d[xm(i),xm(j)]=max{|x(i k)-x(j k)|}

其中,0≤k≤m-1,1≤i,j≤n-m 1,i≠j;

③对于一个给定的矢量xm(i),统计出d[xm(i),xm(j)]<r的数目与其余矢量总数n-m的比值,记作

其中,1≤j≤n-m 1,i≠j,对所有的求平均值bm(r):

增加维数到m 1,即m′=m 1,同样有比值

其中,1≤j≤n-m′ 1,i≠j,对所有的求平均值bm′(r):

④该数据序列的样本熵为:

5.根据权利要求1所述高原地区双车道公路弯坡组合段线形指标选取方法,其特征在于,所述步骤3的具体过程如下:

针对每个海拔区间,对步骤2得到的样本熵saen(hr)、saen(β)、saen(β/θ)和saen(β/(θ α))进行主成分分析,选取累计贡献率超过85%的前k个主成分确定各样本熵的权重系数,以主成分的方差贡献率为权重对权重系数加权平均归一化,得到驾驶员生心理负荷综合评价指标cise:

其中,a、b、c、d均为加权平均归一化后的权重系数。

6.根据权利要求1所述高原地区双车道公路弯坡组合段线形指标选取方法,其特征在于,步骤4所述回归模型形式如下:

cise=eca-f

其中,e、f均为回归系数,e>0,f>0,cise为生心理负荷综合评价指标,ca为弯坡组合段的线形组合值,r为圆曲线半径,i为纵坡。

7.根据权利要求1所述高原地区双车道公路弯坡组合段线形指标选取方法,其特征在于,所述步骤5中在进行弯坡组合段的线形设计时,控制弯坡组合段的线形组合值ca大于cacri,以保证驾驶员在高原地区双车道公路弯坡组合段行车时的心生理负荷处于安全状态。

技术总结
本发明公开了一种高原地区双车道公路弯坡组合段线形指标选取方法,具体步骤如下:结合实地驾驶试验采集驾驶员在不同弯坡组合段的车速、心率和脑电信号数据;对驾驶员的脑电和心率指标进行样本熵处理,提取脑电和心率指标的特征指标;对心率样本熵和脑电信号样本熵进行主成分分析,得到驾驶员生心理负荷综合评价指标CISE;构建综合评价指标CISE与不同海拔区间弯坡组合段的线形组合值CA的回归模型;最后,利用拉格朗日中值定理确定不同海拔高度区间对应的线形组合阈值CAcri,作为弯坡组合路段的线形设计指标。本发明解决了高原低压缺氧环境下弯坡组合路段的线形设计指标选取问题,为高原公路的线形安全设计提供了理论支撑。

技术研发人员:陈飞;左天骄;张丹妮;胡飞;薄雾;张平;朱佳韵
受保护的技术使用者:东南大学
技术研发日:2021.04.09
技术公布日:2021.08.03

转载请注明原文地址:https://doc.8miu.com/read-9320.html

最新回复(0)